

    
      Navigation

      
        	
          index

        	Waterwheel stable documentation 
 
      

    


    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/waterwheel/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/waterwheel/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	Waterwheel stable documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  _static/file.png





_static/plus.png





waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/Carthage/Checkouts/Alamofire/Documentation/Alamofire 2.0 Migration Guide.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  
Alamofire 2.0 Migration Guide


Alamofire 2.0 is the latest major release of Alamofire, an HTTP networking library for iOS, Mac OS X and watchOS written in Swift. As a major release, following Semantic Versioning conventions, 2.0 introduces several API-breaking changes that one should be aware of.


This guide is provided in order to ease the transition of existing applications using Alamofire 1.x to the latest APIs, as well as explain the design and structure of new and changed functionality.



New Requirements


Alamofire 2.0 officially supports iOS 8+, Mac OS X 10.9+, Xcode 7 and Swift 2.0. If you’d like to use Alamofire in a project targeting iOS 7 and Swift 1.x, use the latest tagged 1.x release.







Breaking API Changes



Swift 2.0


The biggest change between Alamofire 1.x and Alamofire 2.0 is Swift 2.0. Swift 2 brought many new features to take advantage of such as error handling, protocol extensions and availability checking. Other new features such as guard and defer do not affect the public APIs, but allowed us to create much cleaner implementations of the same logic. All of the source files, test logic and example code has been updated to reflect the latest Swift 2.0 paradigms.



It is not possible to use Alamofire 2.0 without Swift 2.0.






Response Serializers


The most significant logic change made to Alamofire 2.0 is its new response serialization system leveraging Result types. Previously in Alamofire 1.x, each response serializer used the same completion handler signature:


public func response(completionHandler: (NSURLRequest, NSHTTPURLResponse?, AnyObject?, NSError?) -> Void) -> Self {
    return response(serializer: Request.responseDataSerializer(), completionHandler: completionHandler)
}






Alamofire 2.0 has redesigned the entire response serialization process to make it much easier to access the original server data without serialization, or serialize the response into a non-optional Result type defining whether the Request was successful.



No Response Serialization


The first response serializer is non-generic and does not process the server data in any way. It merely forwards on the accumulated information from the NSURLSessionDelegate callbacks.


public func response(
    queue queue: dispatch_queue_t? = nil,
    completionHandler: (NSURLRequest?, NSHTTPURLResponse?, NSData?, ErrorType?) -> Void)
    -> Self
{
    delegate.queue.addOperationWithBlock {
        dispatch_async(queue ?? dispatch_get_main_queue()) {
            completionHandler(self.request, self.response, self.delegate.data, self.delegate.error)
        }
    }

    return self
}






Another important note of this change is the return type of data is now an NSData type. You no longer need to cast the data parameter from an AnyObject? to an NSData?.





Generic Response Serializers


The second, more powerful response serializer leverages generics along with a Result type to eliminate the case of the dreaded double optional.


public func response<T: ResponseSerializer, V where T.SerializedObject == V>(
    queue queue: dispatch_queue_t? = nil,
    responseSerializer: T,
    completionHandler: (NSURLRequest?, NSHTTPURLResponse?, Result<V>) -> Void)
    -> Self
{
    delegate.queue.addOperationWithBlock {
        let result: Result<T.SerializedObject> = {
            if let error = self.delegate.error {
                return .Failure(self.delegate.data, error)
            } else {
                return responseSerializer.serializeResponse(self.request, self.response, self.delegate.data)
            }
        }()

        dispatch_async(queue ?? dispatch_get_main_queue()) {
            completionHandler(self.request, self.response, result)
        }
    }

    return self
}







Response Data


Alamofire.request(.GET, "http://httpbin.org/get")
         .responseData { _, _, result in
             print("Success: \(result.isSuccess)")
             print("Response: \(result)")
         }









Response String


Alamofire.request(.GET, "http://httpbin.org/get")
         .responseString { _, _, result in
             print("Success: \(result.isSuccess)")
             print("Response String: \(result.value)")
         }









Response JSON


Alamofire.request(.GET, "http://httpbin.org/get")
         .responseJSON { _, _, result in
             print(result)
             debugPrint(result)
         }











Result Types


The Result enumeration was added to handle the case of the double optional return type. Previously, the return value and error were both optionals. Checking if one was nil did not ensure the other was also not nil. This case has been blogged about many times and can be solved by a Result type. Alamofire 2.0 brings a Result type to the response serializers to make it much easier to handle success and failure cases.


public enum Result<Value> {
    case Success(Value)
    case Failure(NSData?, ErrorType)
}






There are also many other convenience computed properties to make accessing the data inside easy. The Result type also conforms to the CustomStringConvertible and CustomDebugStringConvertible protocols to make it easier to debug.





Error Types


While Alamofire still only generates NSError objects, all Result types have been converted to store ErrorType objects to allow custom response serializer implementations to use any ErrorType they wish. This also includes the ValidationResult and MultipartFormDataEncodingResult types as well.







URLRequestConvertible


In order to make it easier to deal with non-common scenarios, the URLRequestConvertible protocol now returns an NSMutableURLRequest. Alamofire 2.0 makes it much easier to customize the URL request after is has been encoded. This should only affect a small amount of users.


public protocol URLRequestConvertible {
    var URLRequest: NSMutableURLRequest { get }
}









Multipart Form Data


Encoding MultipartFormData previous returned an EncodingResult to encapsulate any possible errors that occurred during encoding. Alamofire 2.0 uses the new Swift 2.0 error handling instead making it easier to use. This change is mostly encapsulated internally and should only affect a very small subset of users.









Updated ACLs and New Features



Parameter Encoding



ACL Updates


The ParameterEncoding enumeration implementation was previously hidden behind internal and private ACLs. Alamofire 2.0 opens up the queryComponents and escape methods to make it much easier to implement .Custom cases.





Encoding in the URL


In the previous versions of Alamofire, .URL encoding would automatically append the query string to either the URL or HTTP body depending on which HTTP method was set in the NSURLRequest. While this satisfies the majority of common use cases, it made it quite difficult to append query string parameter to a URL for HTTP methods such as PUT and POST. In Alamofire 2.0, we’ve added a second URL encoding case, .URLEncodedInURL, that always appends the query string to the URL regardless of HTTP method.







Server Trust Policies


In Alamofire 1.x, the ServerTrustPolicyManager methods were internal making it impossible to implement any custom domain matching behavior. Alamofire 2.0 opens up the internals with a public ACL allowing more flexible server trust policy matching behavior (i.e. wildcarded domains) through subclassing.


class CustomServerTrustPolicyManager: ServerTrustPolicyManager {
    override func serverTrustPolicyForHost(host: String) -> ServerTrustPolicy? {
        var policy: ServerTrustPolicy?

        // Implement your custom domain matching behavior...

        return policy
    }
}









Download Requests


The global and Manager download APIs now support parameters and encoding parameters to better support dynamic payloads used in background sessions. Constructing a download request is now the same as constructing a data request with the addition of a destination parameter.


public func download(
    method: Method,
    _ URLString: URLStringConvertible,
    parameters: [String: AnyObject]? = nil,
    encoding: ParameterEncoding = .URL,
    headers: [String: String]? = nil,
    destination: Request.DownloadFileDestination)
    -> Request
{
    return Manager.sharedInstance.download(
        method,
        URLString,
        parameters: parameters,
        encoding: encoding,
        headers: headers,
        destination: destination
    )
}









Stream Tasks


Alamofire 2.0 adds support for creating NSURLSessionStreamTask tasks for iOS 9 and OS X 10.11. It also extends the SessionDelegate to support all the new NSURLSessionStreamDelegate APIs.










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/down.png





waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/Carthage/Checkouts/SwiftyJSON/README.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  #SwiftyJSON 中文介绍 [http://tangplin.github.io/swiftyjson/]


[image: Travis CI] [https://travis-ci.org/SwiftyJSON/SwiftyJSON]


SwiftyJSON makes it easy to deal with JSON data in Swift.



		Why is the typical JSON handling in Swift NOT good


		Requirements


		Integration


		Usage
		Initialization


		Subscript


		Loop


		Error


		Optional getter


		Non-optional getter


		Setter


		Raw object


		Literal convertibles








		Work with Alamofire





##Why is the typical JSON handling in Swift NOT good?
Swift is very strict about types. But although explicit typing is good for saving us from mistakes, it becomes painful when dealing with JSON and other areas that are, by nature, implicit about types.


Take the Twitter API for example. Say we want to retrieve a user’s “name” value of some tweet in Swift (according to Twitter’s API https://dev.twitter.com/docs/api/1.1/get/statuses/home_timeline).


The code would look like this:



if let statusesArray = try? NSJSONSerialization.JSONObjectWithData(data, options: .AllowFragments) as? [[String: AnyObject]],
    let user = statusesArray[0]["user"] as? [String: AnyObject],
    let username = user["name"] as? String {
    // Finally we got the username
}






It’s not good.


Even if we use optional chaining, it would be messy:



if let JSONObject = try NSJSONSerialization.JSONObjectWithData(data, options: .AllowFragments) as? [[String: AnyObject]],
    let username = (JSONObject[0]["user"] as? [String: AnyObject])?["name"] as? String {
        // There's our username
}






An unreadable mess–for something that should really be simple!


With SwiftyJSON all you have to do is:



let json = JSON(data: dataFromNetworking)
if let userName = json[0]["user"]["name"].string {
  //Now you got your value
}






And don’t worry about the Optional Wrapping thing. It’s done for you automatically.



let json = JSON(data: dataFromNetworking)
if let userName = json[999999]["wrong_key"]["wrong_name"].string {
    //Calm down, take it easy, the ".string" property still produces the correct Optional String type with safety
} else {
    //Print the error
    print(json[999999]["wrong_key"]["wrong_name"])
}







Requirements



		iOS 7.0+ / OS X 10.9+


		Xcode 7





##Integration


####CocoaPods (iOS 8+, OS X 10.9+)
You can use Cocoapods [http://cocoapods.org/] to install SwiftyJSONby adding it to your Podfile:


platform :ios, '8.0'
use_frameworks!

target 'MyApp' do
    pod 'SwiftyJSON', :git => 'https://github.com/SwiftyJSON/SwiftyJSON.git'
end






Note that this requires CocoaPods version 36, and your iOS deployment target to be at least 8.0:


####Carthage (iOS 8+, OS X 10.9+)
You can use Carthage [https://github.com/Carthage/Carthage] to install SwiftyJSON by adding it to your Cartfile:


github "SwiftyJSON/SwiftyJSON"






####Swift Package Manager
You can use The Swift Package Manager [https://swift.org/package-manager] to install SwiftyJSON by adding the proper description to your Package.swift file:


import PackageDescription

let package = Package(
    name: "YOUR_PROJECT_NAME",
    targets: [],
    dependencies: [
        .Package(url: "https://github.com/SwiftyJSON/SwiftyJSON.git", versions: "2.3.3" ..< Version.max)
    ]
)






Note that the Swift Package Manager [https://swift.org/package-manager] is still in early design and development, for more infomation checkout its GitHub Page [https://github.com/apple/swift-package-manager]


####Manually (iOS 7+, OS X 10.9+)


To use this library in your project manually you may:



		for Projects, just drag SwiftyJSON.swift to the project tree


		for Workspaces, include the whole SwiftyJSON.xcodeproj








Usage


####Initialization


import SwiftyJSON






let json = JSON(data: dataFromNetworking)






let json = JSON(jsonObject)






if let dataFromString = jsonString.dataUsingEncoding(NSUTF8StringEncoding, allowLossyConversion: false) {
    let json = JSON(data: dataFromString)
}






####Subscript


//Getting a double from a JSON Array
let name = json[0].double






//Getting a string from a JSON Dictionary
let name = json["name"].stringValue






//Getting a string using a path to the element
let path = [1,"list",2,"name"]
let name = json[path].string
//Just the same
let name = json[1]["list"][2]["name"].string
//Alternatively
let name = json[1,"list",2,"name"].string






//With a hard way
let name = json[].string






//With a custom way
let keys:[SubscriptType] = [1,"list",2,"name"]
let name = json[keys].string






####Loop


//If json is .Dictionary
for (key,subJson):(String, JSON) in json {
   //Do something you want
}






The first element is always a String, even if the JSON is an Array


//If json is .Array
//The `index` is 0..<json.count's string value
for (index,subJson):(String, JSON) in json {
    //Do something you want
}






####Error
Use a subscript to get/set a value in an Array or Dictionary


If the JSON is:



		an array, the app may crash with “index out-of-bounds.”


		a dictionary, it will be assigned nil without a reason.


		not an array or a dictionary, the app may crash with an “unrecognised selector” exception.





This will never happen in SwiftyJSON.


let json = JSON(["name", "age"])
if let name = json[999].string {
    //Do something you want
} else {
    print(json[999].error) // "Array[999] is out of bounds"
}






let json = JSON(["name":"Jack", "age": 25])
if let name = json["address"].string {
    //Do something you want
} else {
    print(json["address"].error) // "Dictionary["address"] does not exist"
}






let json = JSON(12345)
if let age = json[0].string {
    //Do something you want
} else {
    print(json[0])       // "Array[0] failure, It is not an array"
    print(json[0].error) // "Array[0] failure, It is not an array"
}

if let name = json["name"].string {
    //Do something you want
} else {
    print(json["name"])       // "Dictionary[\"name"] failure, It is not an dictionary"
    print(json["name"].error) // "Dictionary[\"name"] failure, It is not an dictionary"
}






####Optional getter


//NSNumber
if let id = json["user"]["favourites_count"].number {
   //Do something you want
} else {
   //Print the error
   print(json["user"]["favourites_count"].error)
}






//String
if let id = json["user"]["name"].string {
   //Do something you want
} else {
   //Print the error
   print(json["user"]["name"])
}






//Bool
if let id = json["user"]["is_translator"].bool {
   //Do something you want
} else {
   //Print the error
   print(json["user"]["is_translator"])
}






//Int
if let id = json["user"]["id"].int {
   //Do something you want
} else {
   //Print the error
   print(json["user"]["id"])
}
...






####Non-optional getter
Non-optional getter is named xxxValue


//If not a Number or nil, return 0
let id: Int = json["id"].intValue






//If not a String or nil, return ""
let name: String = json["name"].stringValue






//If not a Array or nil, return []
let list: Array<JSON> = json["list"].arrayValue






//If not a Dictionary or nil, return [:]
let user: Dictionary<String, JSON> = json["user"].dictionaryValue






####Setter


json["name"] = JSON("new-name")
json[0] = JSON(1)






json["id"].int =  1234567890
json["coordinate"].double =  8766.766
json["name"].string =  "Jack"
json.arrayObject = [1,2,3,4]
json.dictionary = ["name":"Jack", "age":25]






####Raw object


let jsonObject: AnyObject = json.object






if let jsonObject: AnyObject = json.rawValue






//convert the JSON to raw NSData
if let data = json.rawData() {
    //Do something you want
}






//convert the JSON to a raw String
if let string = json.rawString() {
    //Do something you want
}






####Existance


//shows you whether value specified in JSON or not
if json["name"].isExists()






####Literal convertibles
For more info about literal convertibles: Swift Literal Convertibles [http://nshipster.com/swift-literal-convertible/]


//StringLiteralConvertible
let json: JSON = "I'm a json"






//IntegerLiteralConvertible
let json: JSON =  12345






//BooleanLiteralConvertible
let json: JSON =  true






//FloatLiteralConvertible
let json: JSON =  2.8765






//DictionaryLiteralConvertible
let json: JSON =  ["I":"am", "a":"json"]






//ArrayLiteralConvertible
let json: JSON =  ["I", "am", "a", "json"]






//NilLiteralConvertible
let json: JSON =  nil






//With subscript in array
var json: JSON =  [1,2,3]
json[0] = 100
json[1] = 200
json[2] = 300
json[999] = 300 //Don't worry, nothing will happen






//With subscript in dictionary
var json: JSON =  ["name": "Jack", "age": 25]
json["name"] = "Mike"
json["age"] = "25" //It's OK to set String
json["address"] = "L.A." // Add the "address": "L.A." in json






//Array & Dictionary
var json: JSON =  ["name": "Jack", "age": 25, "list": ["a", "b", "c", ["what": "this"]]]
json["list"][3]["what"] = "that"
json["list",3,"what"] = "that"
let path = ["list",3,"what"]
json[path] = "that"






##Work with Alamofire


SwiftyJSON nicely wraps the result of the Alamofire JSON response handler:


Alamofire.request(.GET, url).validate().responseJSON { response in
    switch response.result {
    case .Success:
        if let value = response.result.value {
          let json = JSON(value)
          print("JSON: \(json)")
        }
    case .Failure(let error):
        print(error)
    }
}










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/up.png





waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/Carthage/Checkouts/Alamofire/Documentation/Alamofire 3.0 Migration Guide.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  
Alamofire 3.0 Migration Guide


Alamofire 3.0 is the latest major release of Alamofire, an HTTP networking library for iOS, Mac OS X and watchOS written in Swift. As a major release, following Semantic Versioning conventions, 3.0 introduces several API-breaking changes that one should be aware of.


This guide is provided in order to ease the transition of existing applications using Alamofire 2.x to the latest APIs, as well as explain the design and structure of new and changed functionality.



Requirements


Alamofire 3.0 officially supports iOS 8+, Mac OS X 10.9+, watchOS 2.0, Xcode 7 and Swift 2.0. If you’d like to use Alamofire in a project targeting iOS 7 and Swift 1.x, use the latest tagged 1.x release.





Reasons for Bumping to 3.0


The Alamofire Software Foundation [https://github.com/Alamofire/Foundation] (ASF) tries to do everything possible to avoid MAJOR version bumps. We realize the challenges involved with migrating large projects from one MAJOR version to another. With that said, we also want to make sure we’re always producing the highest quality APIs and features possible.


After releasing Alamofire 2.0, it became clear that the response serialization system still had some room for improvement. After much debate, we decided to strictly follow semver and move forward with all the core logic changes becoming Alamofire 3.0. We’ve also made some fairly significant changes that should give us more flexibility moving forward to help avoid the need for MAJOR version bumps to maintain backwards compatibility.





Benefits of Upgrading


The benefits of upgrading can be summarized as follows:



		No more casting a response serializer error from an ErrorType to an NSError.


		Original server data is now ALWAYS returned in all response serializers regardless of whether the result was a .Success or .Failure.


		Custom response serializers are now ALWAYS called regardless of whether an error occurred.


		Custom response serializers are now passed in the error allowing you to switch between different parsing schemes if necessary.


		Custom response serializers can now wrap up any Alamofire NSError into a CustomError type of your choosing.


		Manager initialization can now accept custom NSURLSession or SessionDelegate objects using dependency injection.










Breaking API Changes


Alamofire 3.0 contains some breaking API changes to the foundational classes supporting the response serialization system. It is important to understand how these changes affect the common usage patterns.



Result Type


The Result type was introduced in Alamofire 2.0 as a single generic parameter with the following signature:


public enum Result<Value> {
    case Success(Value)
    case Failure(NSData?, ErrorType)
}






While this was a significant improvement on the behavior of Alamofire 1.0, there was still room for improvement. By defining the .Failure case to take an ErrorType, all consumers needed to cast the ErrorType to some concrete object such as an NSError before being able to interact with it. This was certainly not ideal. Additionally, by only allowing the NSData? from the server to be appended in a .Failure case, it was not possible to access the original server data in a .Success case.


In Alamofire 3.0, the Result type has been redesigned to be a double generic type that does not store the NSData? in the .Failure case.


public enum Result<Value, Error: ErrorType> {
    case Success(Value)
    case Failure(Error)
}






These changes allow Alamofire to return the original server data in both cases. It also removes the requirement of having to cast the ErrorType when working with the .Failure case error object.





Response


In order to avoid constantly having to change the response serializer completion closure signatures, Alamofire 3.0 introduces a Response struct. All response serializers (with the exception of response) return a generic Response struct.


public struct Response<Value, Error: ErrorType> {
    /// The URL request sent to the server.
    public let request: NSURLRequest?

    /// The server's response to the URL request.
    public let response: NSHTTPURLResponse?

    /// The data returned by the server.
    public let data: NSData?

    /// The result of response serialization.
    public let result: Result<Value, Error>
}






This unifies the signature of all response serializer completion closures by only needing to specify a single parameter rather than three or four. If another major release of Alamofire needs to modify the signature, thankfully the number of parameters in all response serializers will NOT need to change. Given the fact that the Swift compiler can present some fairly misleading compiler errors when the arguments are not correct, this should help alleviate some painful updates between MAJOR version bumps of Alamofire.





Response Serializers


The biggest change in Alamofire 3.0 are the response serializers. They are now powered by the new Response struct and updated Result type. These two generic classes make it VERY easy to interact with the response serializers in a consistent, type-safe manner.


Alamofire.request(.GET, "http://httpbin.org/get", parameters: ["foo": "bar"])
         .responseJSON { response in
             debugPrint(response)     // prints detailed description of all response properties

             print(response.request)  // original URL request
             print(response.response) // URL response
             print(response.data)     // server data
             print(response.result)   // result of response serialization

             if let JSON = response.result.value {
                 print("JSON: \(JSON)")
             }
         }






Besides the single response parameter in the completion closure, the other major callouts are that the original server data is always available whether the Result was a .Success or .Failure. Additionally, both the value and error of the Result type are strongly typed objects thanks to the power of generics. All default response serializer errors will be an NSError type. Custom response serializers can specify any custom ErrorType.



Response Serializer Type


For those wishing to create custom response serializer types, you’ll need to familiarize yourself with the new ResponseSerializerType protocol and generic ResponseSerializer struct.


public protocol ResponseSerializerType {
    /// The type of serialized object to be created by this `ResponseSerializerType`.
    typealias SerializedObject

    /// The type of error to be created by this `ResponseSerializer` if serialization fails.
    typealias ErrorObject: ErrorType

    /**
        A closure used by response handlers that takes a request, response, data and error and returns a result.
    */
    var serializeResponse: (NSURLRequest?, NSHTTPURLResponse?, NSData?, NSError?) -> Result<SerializedObject, ErrorObject> { get }
}






All the possible information about the Request is now passed into the serializeResponse closure. In Alamofire 3.0, the serializeResponse closure is ALWAYS called whether an error occurred or not. This is for several reasons.



		Passing the error into the response serializer allows the implementation to switch parsing schemes based on what error occurred. For example, some APIs will return different payload schemas when certain errors occur. The new design allows you to switch on the error type and use different parsing logic.





		Any error produced by Alamofire will always be an NSError. If your custom response serializer returns CustomError types, then the NSError returned by Alamofire must be converted into a CustomError type. This makes it MUCH easier to wrap Alamofire errors in your own CustomError type objects.



This is also required for all the generics logic to work properly.

















Validation Result


The ValidationResult enumeration in Alamofire 3.0 has been updated to take an NSError in the .Failure case. The reasoning for this change is that all Alamofire errors generated need to be NSError types. If not, it introduces the need to cast all error objects coming from Alamofire at the response serializer level.


public enum ValidationResult {
    case Success
    case Failure(NSError)
}







If you are extending the Request type in any way that can produce an error, that error always needs to be of type NSError. If you’d like to wrap the error into a CustomError type, it should be wrapped in a custom response serializer implementation.










New Features



Dependency Injection


Alamofire 3.0 leverages dependency injection [https://en.wikipedia.org/wiki/Dependency_injection] to allow some powerful new customizations to take place for the URL session and delegate.



Session Delegate


In previous versions of Alamofire, the SessionDelegate was automatically created by the Manager instance. While this is convenient, it can be problematic for background sessions. One may need to hook up the task override closures before instantiating the URL session. Otherwise the URL session delegate could be called before the task override closures are able to be set.


In Alamofire 3.0, the Manager initializer adds the ability to provide a custom SessionDelegate object with the task override closures already set using dependency injection. This greatly increases the flexibility of Alamofire in regards to background sessions.


public init(
    configuration: NSURLSessionConfiguration = NSURLSessionConfiguration.defaultSessionConfiguration(),
    delegate: SessionDelegate = SessionDelegate(),
    serverTrustPolicyManager: ServerTrustPolicyManager? = nil)
{
    self.delegate = delegate
    self.session = NSURLSession(configuration: configuration, delegate: delegate, delegateQueue: nil)

    commonInit(serverTrustPolicyManager: serverTrustPolicyManager)
}









URL Session


Alamofire 3.0 also adds the ability to use dependency injection to provide a custom NSURLSession to the Manager instance. This provides complete control over the URL session initialization if you need it allowing NSURLSession subclasses for various kinds of testing and DVR implementations.


public init?(
    session: NSURLSession,
    delegate: SessionDelegate,
    serverTrustPolicyManager: ServerTrustPolicyManager? = nil)
{
    self.delegate = delegate
    self.session = session

    guard delegate === session.delegate else { return nil }

    commonInit(serverTrustPolicyManager: serverTrustPolicyManager)
}







We’re very excited to see what the community comes up with given these new possibilities with Alamofire 3.0.













          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/ajax-loader.gif





waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/Carthage/Checkouts/Alamofire/Documentation/Alamofire 4.0 Migration Guide.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  
Alamofire 4.0 Migration Guide


Alamofire 4.0 is the latest major release of Alamofire, an HTTP networking library for iOS, tvOS, macOS and watchOS written in Swift. As a major release, following Semantic Versioning conventions, 4.0 introduces API-breaking changes.


This guide is provided in order to ease the transition of existing applications using Alamofire 3.x to the latest APIs, as well as explain the design and structure of new and updated functionality.



		Requirements


		Benefits of Upgrading


		Breaking API Changes
		Namespace Changes


		Making Requests


		URLStringConvertible


		URLRequestConvertible








		New Features
		Request Adapter


		Request Retrier


		Task Metrics








		Updated Features
		Errors


		Parameter Encoding Protocol


		Request Subclasses


		Response Validation


		Response Serializers












Requirements



		iOS and tvOS 9.0+, macOS 10.11.0+, watchOS 2.0+


		Xcode 8.0+


		Swift 3.0+





For those of you that would like to use Alamofire on iOS 8 or macOS 10.9, please use the latest tagged 3.x release which supports both Swift 2.2 and 2.3.





Benefits of Upgrading



		Complete Swift 3 Compatibility: includes the full adoption of the new API Design Guidelines [https://swift.org/documentation/api-design-guidelines/].


		New Error System: uses a new AFError type to adhere to the new pattern proposed in SE-0112 [https://github.com/apple/swift-evolution/blob/master/proposals/0112-nserror-bridging.md].


		New RequestAdapter Protocol: allows inspection and adaptation of every URLRequest before instantiating a Request allowing for easy modification of properties like the Authorization header.


		New RequestRetrier Protocol: allows you to inspect and retry any failed Request if necessary allowing you to build custom authentication solutions (OAuth1, OAuth2, xAuth, Basic Auth, etc.) around a set of requests.


		New Parameter Encoding Protocol: replaces the ParameterEncoding enumeration allowing for easier extension and customization and also throws errors on failure instead of returning a tuple.


		New Request Types: include DataRequest, DownloadRequest, UploadRequest and StreamRequest that implement specialized progress, validation and serialization APIs and behaviors per Request type.


		New Progress APIs: include downloadProgress and uploadProgress APIs supporting both Progress and Int64 types and called on a specified dispatch queue defaulting to .main.


		Enhanced Response Validation: now includes the data or temporaryURL and destinationURL allowing inline closures to parse the server data for error messages if validation failed.


		New Download Destinations: allow you to have full control over the move operation on the file system by disabling it, removing a previous file and creating intermediate directories.


		New Response Types: unify response API signatures and expose temporaryURL and downloadURL properties for downloads and the all new task metrics on newer platforms.










Breaking API Changes


Alamofire 4 has fully adopted all the new Swift 3 changes and conventions, including the new API Design Guidelines [https://swift.org/documentation/api-design-guidelines/]. Because of this, almost every API in Alamofire has been modified in some way. We can’t possibly document every single change, so we’re going to attempt to identify the most common APIs and how they have changed to help you through those sometimes less than helpful compiler errors.



Namespace Changes


Some of the common classes have been moved into the global namespace to make them a bit easier to work with and to make them first class types.



		Manager is now SessionManager


		Request.TaskDelegate is now TaskDelegate


		Request.DataTaskDelegate is now DataTaskDelegate


		Request.DownloadTaskDelegate is now DownloadTaskDelegate


		Request.UploadTaskDelegate is now UploadTaskDelegate





We’ve also reorganized the file structure and organization patterns significantly to make it easier to follow the code. We hope that this will encourage more users to get to know the internal structure and implementation of Alamofire. Knowledge is power.





Making Requests


Since making requests is certainly the most common operation in Alamofire, here are some examples of Alamofire 3.x requests compared to their new equivalents in Alamofire 4.



Data Request - Simple with URL string


// Alamofire 3
Alamofire.request(.GET, urlString).response { request, response, data, error in
    print(request)
    print(response)
    print(data)
    print(error)
}

// Alamofire 4
Alamofire.request(urlString).response { response in // method defaults to `.get`
    debugPrint(response)
}









Data Request - Complex with URL string


// Alamofire 3
let parameters: [String: AnyObject] = ["foo": "bar"]

Alamofire.request(.GET, urlString, parameters: parameters, encoding: .JSON)
    .progress { bytesRead, totalBytesRead, totalBytesExpectedToRead in
        print("Bytes: \(bytesRead), Total Bytes: \(totalBytesRead), Total Bytes Expected: \(totalBytesExpectedToRead)")
    }
    .validate { request, response in
        // Custom evaluation closure (no access to server data)
        return .success
    }
    .responseJSON { response in
        debugPrint(response)
    }

// Alamofire 4
let parameters: Parameters = ["foo": "bar"]

Alamofire.request(urlString, method: .get, parameters: parameters, encoding: JSONEncoding.default)
    .downloadProgress(queue: DispatchQueue.utility) { progress in
        print("Progress: \(progress.fractionCompleted)")
    }
    .validate { request, response, data in
        // Custom evaluation closure now includes data (allows you to parse data to dig out error messages if necessary)
        return .success
    }
    .responseJSON { response in
        debugPrint(response)
    }









Download Request - Simple with URL string


// Alamofire 3
let destination = Request.suggestedDownloadDestination()

Alamofire.download(.GET, urlString, destination: destination).response { request, response, data, error in
    // What is fileURL...not easy to get
    print(request)
    print(response)
    print(data)
    print(error)
}

// Alamofire 4
let destination = Request.suggestedDownloadDestination()

Alamofire.download(urlString, to: destination).response { response in // method defaults to `.get`
    print(response.request)
    print(response.response)
    print(response.temporaryURL)
    print(response.destinationURL)
    print(response.error)
}









Download Request - Simple with URL request


// Alamofire 3
let destination = Request.suggestedDownloadDestination()

Alamofire.download(urlRequest, destination: destination).validate().responseData { response in
    // What is fileURL...not easy to get
    debugPrint(response)
}

// Alamofire 4
Alamofire.download(urlRequest, to: destination).validate().responseData { response in
    debugPrint(response)
    print(response.temporaryURL)
    print(response.destinationURL)
}









Download Request - Complex with URL string


// Alamofire 3
let fileURL: NSURL
let destination: Request.DownloadFileDestination = { _, _ in fileURL }
let parameters: [String: AnyObject] = ["foo": "bar"]

Alamofire.download(.GET, urlString, parameters: parameters, encoding: .JSON, to: destination)
    .progress { bytesRead, totalBytesRead, totalBytesExpectedToRead in
        print("Bytes: \(bytesRead), Total Bytes: \(totalBytesRead), Total Bytes Expected: \(totalBytesExpectedToRead)")
    }
    .validate { request, response in
        // Custom evaluation implementation (no access to temporary or destination URLs)
        return .success
    }
    .responseJSON { response in
        print(fileURL) // Only accessible if captured in closure scope, not ideal
        debugPrint(response)
    }

// Alamofire 4
let fileURL: URL
let destination: Request.DownloadFileDestination = { _, _ in 
    return (fileURL, [.createIntermediateDirectories, .removePreviousFile]) 
}
let parameters: Parameters = ["foo": "bar"]

Alamofire.download(urlString, method: .get, parameters: parameters, encoding: JSONEncoding.default)
    .downloadProgress(queue: DispatchQueue.utility) { progress in
        print("Progress: \(progress.fractionCompleted)")
    }
    .validate { request, response, temporaryURL, destinationURL in
        // Custom evaluation closure now includes file URLs (allows you to parse out error messages if necessary)
        return .success
    }
    .responseJSON { response in
        debugPrint(response)
        print(response.temporaryURL)
        print(response.destinationURL)
    }









Upload Request - Simple with URL string


// Alamofire 3
Alamofire.upload(.POST, urlString, data: data).response { request, response, data, error in
    print(request)
    print(response)
    print(data)
    print(error)
}

// Alamofire 4
Alamofire.upload(data, to: urlString).response { response in // method defaults to `.post`
    debugPrint(response)
}









Upload Request - Simple with URL request


// Alamofire 3
Alamofire.upload(urlRequest, file: fileURL).validate().responseData { response in
    debugPrint(response)
}

// Alamofire 4
Alamofire.upload(fileURL, with: urlRequest).validate().responseData { response in
    debugPrint(response)
}









Upload Request - Complex with URL string


// Alamofire 3
Alamofire.upload(.PUT, urlString, file: fileURL)
    .progress { bytes, totalBytes, totalBytesExpected in
        // Are these for upload or for downloading the response?
        print("Bytes: \(bytesRead), Total Bytes: \(totalBytesRead), Total Bytes Expected: \(totalBytesExpectedToRead)")
    }
    .validate { request, response in
        // Custom evaluation implementation (no access to server data)
        return .success
    }
    .responseJSON { response in
        debugPrint(response)
    }

// Alamofire 4
Alamofire.upload(fileURL, to: urlString, method: .put)
    .uploadProgress(queue: DispatchQueue.utility) { progress in
        print("Upload Progress: \(progress.fractionCompleted)")
    }
    .downloadProgress { progress in // called on main queue by default
        print("Download Progress: \(progress.fractionCompleted)")
    }
    .validate { request, response, data in
        // Custom evaluation closure now includes data (allows you to parse data to dig out error messages if necessary)
        return .success
    }
    .responseJSON { response in
        debugPrint(response)
    }






As you can see, there are many breaking API changes, but the common APIs still adhere to the original design goals of being able to make complex requests through a single line of code in a concise, well defined manner.







URLStringConvertible


There are two changes to the URLStringConvertible protocol that are worth noting.



URLConvertible


The first MAJOR change worth noting on the URLStringConvertible is that it has been renamed to URLConvertible. In Alamofire 3.x, the URLStringConvertible was defined as:


public protocol URLStringConvertible {
    var URLString: String { get }
}






Now in Alamofire 4, the URLConvertible protocol is defined as:


public protocol URLConvertible {
    func asURL() throws -> URL
}






As you can see, the URLString property is completely gone and replaced by a new asURL method that throws. To explain, let’s first backup.


A VERY common problem in Alamofire is that users forget to percent escape their URL strings and Alamofire will crash. Up until now, we (the Alamofire team) have taken the stance that this is how Alamofire is designed and your URLs need to conform to RFC 2396 [https://tools.ietf.org/html/rfc2396]. This is certainly not ideal for the community because we all would rather have Alamofire tell us that our URL was invalid rather than having it crash.


Now, back to the new URLConvertible protocol. The reason Alamofire was not previously able to safely handle invalid URL strings was, in fact, due to the lack of safety on URLStringConvertible. It’s not possible for Alamofire to know how to intelligently make an invalid URL string valid. Therefore, if the URL is unable to be created from the URLConvertible, an AFError.invalidURL error is thrown.


This change (along with many others) allows Alamofire to safely handle invalid URLs and report the error back in the response handlers.





URLRequest Conformance


The URLRequest no longer conforms to the URLStringConvertible, now URLConvertible protocol. This was always a bit of a stretch in the previous versions of Alamofire and wasn’t really necessary. It also had a high potential to introduce ambiguity into many Alamofire APIs. Because of these reasons, URLRequest no longer conforms to URLStringConvertible (now URLConvertible).


What this means in code is that you can no longer do the following:


let urlRequest = URLRequest(url: URL(string: "https://httpbin.org/get")!)
let urlString = urlRequest.urlString






Instead, in Alamofire 4, you now have to do the following:


let urlRequest = URLRequest(url: URL(string: "https://httpbin.org/get")!)
let urlString = urlRequest.url?.absoluteString







See PR-1505 [https://github.com/Alamofire/Alamofire/pull/1505] for more info.








URLRequestConvertible


The URLRequestConvertible was susceptible to the same safety issues concerns as the URLStringConvertible in Alamofire 3.x. In Alamofire 3, the URLRequestConvertible was:


public protocol URLRequestConvertible {
    var URLRequest: URLRequest { get }
}






Now, in Alamofire 4, it is:


public protocol URLRequestConvertible {
    func asURLRequest() throws -> URLRequest
}






As you can see, the URLRequest property has been replaced by an asURLRequest method that throws when encountering an error generating the URLRequest.


The most likely place this will affect your code is in the Router design pattern. If you have a Router, it’s going to have to change, but for the better! You will now implement the asURLRequest method instead of the property which gives you the ability to throw an error if necessary. You no longer have to force unwrap unsafe data or parameters or wrap ParameterEncoding in a do-catch. Any error encountered in a Router can now be automatically handled by Alamofire.



See PR-1505 [https://github.com/Alamofire/Alamofire/pull/1505] for more info.










New Features



Request Adapter


The RequestAdapter protocol is a completely new feature in Alamofire 4.


public protocol RequestAdapter {
    func adapt(_ urlRequest: URLRequest) throws -> URLRequest
}






It allows each Request made on a SessionManager to be inspected and adapted before being created. One very specific way to use an adapter is to append an Authorization header to requests behind a certain type of authentication.


class AccessTokenAdapter: RequestAdapter {
    private let accessToken: String

    init(accessToken: String) {
        self.accessToken = accessToken
    }

    func adapt(_ urlRequest: URLRequest) throws -> URLRequest {
        var urlRequest = urlRequest

        if urlRequest.urlString.hasPrefix("https://httpbin.org") {
            urlRequest.setValue("Bearer " + accessToken, forHTTPHeaderField: "Authorization")
        }

        return urlRequest
    }
}

let sessionManager = SessionManager()
sessionManager.adapter = AccessTokenAdapter(accessToken: "1234")

sessionManager.request("https://httpbin.org/get")






If an Error occurs during the adaptation process, it should be thrown and will be delivered in the response handler of the Request.



See PR-1450 [https://github.com/Alamofire/Alamofire/pull/1450] for more info.






Request Retrier


The RequestRetrier is another brand new Alamofire 4 protocol.


public typealias RequestRetryCompletion = (_ shouldRetry: Bool, _ timeDelay: TimeInterval) -> Void

public protocol RequestRetrier {
    func should(_ manager: SessionManager, retry request: Request, with error: Error, completion: @escaping RequestRetryCompletion)
}






It allows a Request that encountered an Error while being executed to be retried with an optional delay if specified.


class OAuth2Handler: RequestAdapter, RequestRetrier {
    public func should(_ manager: SessionManager, retry request: Request, with error: Error, completion: RequestRetryCompletion) {
        if let response = request.task.response as? HTTPURLResponse, response.statusCode == 401 {
            completion(true, 1.0) // retry after 1 second
        } else {
            completion(false, 0.0) // don't retry
        }
    }
}

let sessionManager = SessionManager()
sessionManager.retrier = OAuth2Handler()

sessionManager.request(urlString).responseJSON { response in
    debugPrint(response)
}






The retrier allows you to inspect the Request after it has completed and run all Validation closures to determine whether it should be retried. When using both the RequestAdapter and RequestRetrier protocols together, you can create credential refresh systems for OAuth1, OAuth2, Basic Auth and even exponential backoff retry policies. The possibilities are endless. For more information and examples on this topic, please refer to the README.



See PR-1391 [https://github.com/Alamofire/Alamofire/pull/1391] and PR-1450 [https://github.com/Alamofire/Alamofire/pull/1450] for more info.






Task Metrics


In iOS and tvOS 10 and macOS 10.12, Apple introduced the new URLSessionTaskMetrics [https://developer.apple.com/reference/foundation/urlsessiontaskmetrics] APIs. The task metrics encapsulate some fantastic statistical information about the request and response execution. The API is very similar to Alamofire’s Timeline, but provide many more statistics that Alamofire was unable to compute. We’re really excited about these APIs and have exposed them on each Response type meaning they couldn’t be easier to use.


Alamofire.request(urlString).response { response in
    debugPrint(response.metrics)
}






It’s important to note that these APIs are only available on iOS and tvOS 10+ and macOS 10.12+. Therefore, depending on your deployment target, you may need to use these inside availability checks:


Alamofire.request(urlString).response { response in
    if #available(iOS 10.0. *) {
        debugPrint(response.metrics)
    }
}







See PR-1492 [https://github.com/Alamofire/Alamofire/pull/1492] for more info.










Updated Features


Alamofire 4 contains many new features and enhancments on existing ones. This section is designed to give a brief overview of the features and demonstrate their uses. For more information on each each, please refer to the linked pull request.



Errors


Alamofire 4 contains a completely new error system that adopts the new pattern proposed in SE-0112 [https://github.com/apple/swift-evolution/blob/master/proposals/0112-nserror-bridging.md]. At the heart of the new error system is AFError, a new Error type enumeration backed by four main cases.



		.invalidURL(url: URLConvertible) - Returned when a URLConvertible type fails to create a valid URL.


		.parameterEncodingFailed(reason: ParameterEncodingFailureReason) - Returned when a parameter encoding object throws an error during the encoding process.


		.multipartEncodingFailed(reason: MultipartEncodingFailureReason) - Returned when some step in the multipart encoding process fails.


		.responseValidationFailed(reason: ResponseValidationFailureReason) - Returned when a validate() call fails.


		.responseSerializationFailed(reason: ResponseSerializationFailureReason) - Returned when a response serializer encounters an error in the serialization process.





Each case contains a specific failure reason which is another nested enumeration with multiple cases that contain additional information about the exact type of error that occurred. What this ultimately means is that is is much easier in Alamofire to identify where an error came from and what to do about it.


Alamofire.request(urlString).responseJSON { response in
    guard case let .failure(error) = response.result else { return }

    if let error = error as? AFError {
        switch error {
        case .invalidURL(let url):
            print("Invalid URL: \(url) - \(error.localizedDescription)")
        case .parameterEncodingFailed(let reason):
            print("Parameter encoding failed: \(error.localizedDescription)")
            print("Failure Reason: \(reason)")
        case .multipartEncodingFailed(let reason):
            print("Multipart encoding failed: \(error.localizedDescription)")
            print("Failure Reason: \(reason)")
        case .responseValidationFailed(let reason):
            print("Response validation failed: \(error.localizedDescription)")
            print("Failure Reason: \(reason)")

            switch reason {
            case .dataFileNil, .dataFileReadFailed:
                print("Downloaded file could not be read")
            case .missingContentType(let acceptableContentTypes):
                print("Content Type Missing: \(acceptableContentTypes)")
            case .unacceptableContentType(let acceptableContentTypes, let responseContentType):
                print("Response content type: \(responseContentType) was unacceptable: \(acceptableContentTypes)")
            case .unacceptableStatusCode(let code):
                print("Response status code was unacceptable: \(code)")
            }
        case .responseSerializationFailed(let reason):
            print("Response serialization failed: \(error.localizedDescription)")
            print("Failure Reason: \(reason)")
        }

        print("Underlying error: \(error.underlyingError)")
    } else if let error = error as? URLError {
        print("URLError occurred: \(error)")
    } else {
        print("Unknown error: \(error)")
    }
}






This new design allows you to drill down into errors as deep as you may need to in order to figure out the best way to proceed. It also frees developers from the burden of having to deal with NSError types everywhere. By switching to our own custom Error type in Alamofire, we’ve been able to simplify the Result and Response generic types to only require a single generic parameter. This simplifies the response serialization logic.



See PR-1419 [https://github.com/Alamofire/Alamofire/pull/1419] for more info.






Parameter Encoding Protocol


The ParameterEncoding enumeration has served us well for over two years at this point. However, it had some limitations that we wanted to address in Alamofire 4.



		The .url case has always been a bit confusing since it selects a destination based on the HTTP method.


		The .urlEncodedInURL case has always been an eye sore to work around the behavior of the .url case.


		.JSON and .PropertyList encoding could not accept formatting or writing options.


		The .Custom encoding was a bit difficult for users to get the hang of.





Because of these reasons, we decided to eliminate the enumeration altogether in Alamofire 4! Now, ParameterEncoding is a protocol backed by three concrete URLEncoding, JSONEncoding and PropertyList encoding structs with a new Parameters typealias for creating your parameter dictionaries.


public typealias Parameters = [String: Any]

public protocol ParameterEncoding {
    func encode(_ urlRequest: URLRequestConvertible, with parameters: Parameters?) throws -> URLRequest
}







URL Encoding


The new URLEncoding struct contains a Destination enumeration supporting three types of destinations:



		.methodDependent - Applies encoded query string result to existing query string for GET, HEAD and DELETE requests and sets as the HTTP body for requests with any other HTTP method.


		.queryString - Sets or appends encoded query string result to existing query string.


		.httpBody - Sets encoded query string result as the HTTP body of the URL request.





These destinations make it much easier to control where the parameters are encoded onto the URLRequest. Creating requests still uses the same signature as before in regards to parameter encoding and also has the same default behavior.


let parameters: Parameters = ["foo": "bar"]

Alamofire.request(urlString, parameters: parameters) // Encoding => URLEncoding(destination: .methodDependent)
Alamofire.request(urlString, parameters: parameters, encoding: URLEncoding(destination: .queryString))
Alamofire.request(urlString, parameters: parameters, encoding: URLEncoding(destination: .httpBody))

// Static convenience properties (we'd like to encourage everyone to use this more concise form)
Alamofire.request(urlString, parameters: parameters, encoding: URLEncoding.default)
Alamofire.request(urlString, parameters: parameters, encoding: URLEncoding.queryString)
Alamofire.request(urlString, parameters: parameters, encoding: URLEncoding.httpBody)









JSON Encoding


The new JSONEncoding struct exposes the ability to customize the JSON writing options.


let parameters: Parameters = ["foo": "bar"]

Alamofire.request(urlString, parameters: parameters, encoding: JSONEncoding(options: []))
Alamofire.request(urlString, parameters: parameters, encoding: JSONEncoding(options: .prettyPrinted))

// Static convenience properties (we'd like to encourage everyone to use this more concise form)
Alamofire.request(urlString, parameters: parameters, encoding: JSONEncoding.default)
Alamofire.request(urlString, parameters: parameters, encoding: JSONEncoding.prettyPrinted)









Property List Encoding


The new PropertyListEncoding struct allows customizing the plist format and write options.


let parameters: Parameters = ["foo": "bar"]

Alamofire.request(urlString, parameters: parameters, encoding: PropertyListEncoding(format: .xml, options: 0))
Alamofire.request(urlString, parameters: parameters, encoding: PropertyListEncoding(format: .binary, options: 0))

// Static convenience properties (we'd like to encourage everyone to use this more concise form)
Alamofire.request(urlString, parameters: parameters, encoding: PropertyListEncoding.xml)
Alamofire.request(urlString, parameters: parameters, encoding: PropertyListEncoding.binary)









Custom Encoding


Creating a custom custom ParameterEncoding is now as simple as implementing the protocol. For more examples on how to do this, please refer to the README.



See PR-1465 [https://github.com/Alamofire/Alamofire/pull/1465] for more info.








Request Subclasses


In Alamofire 4, the request, download, upload and stream APIs no longer return a Request. Instead, they return a specific type of Request subclass. There were several motivating factors and community questions that led us to making this change:



		Progress: The behavior of the progress method was confusing for upload requests.
		What does progress report on an upload Request? The progress of the upload? The progress of the response download?


		If it reports both, how do you know if or when it switches?








		Response Serializers: The response serializers were designed for data and upload requests, not download or stream requests.
		How do you access the fileURL when a download is complete?


		What would responseData, responseString or responseJSON do for a download request? Stream request?











At a high level, Alamofire 4 now has four Request subclasses that each support their own custom chained APIs. This allows each subclass to create extensions tailored to that specific type of request.


open class Request {
    // Contains common properties, authentication and state methods as well as
    // CustomStringConvertible and CustomDebugStringConvertible conformance
}

open class DataRequest: Request {
    // Contains stream (not to be confused with StreamRequest) and download progress methods.
}

open class DownloadRequest: Request {
    // Contains download destination and options, resume data and download progress methods.
}

open class UploadRequest: DataRequest {
    // Inherits all DataRequest APIs and also contains upload progress methods.
}

open class StreamRequest: Request {
    // Only inherits Request APIs, there are no other custom APIs at this time.
}






By making this split, Alamofire 4 was able to create customized chaining APIs for each type of Request. This opened up all sorts of possibilities, but let’s take a moment to focus on what this change means in terms of progress reporting and download destinations.



See PR-1455 [https://github.com/Alamofire/Alamofire/pull/1455] for more info.




Download and Upload Progress


The progress reporting system for data, download and upload requests has been completely redesigned. Each request type contains progress APIs for executing a closure during each progress update by returning the underlying Progress instance. The closure will be called on the specified queue that defaults to main.


Data Request Progress


Alamofire.request(urlString)
    .downloadProgress { progress in
        // Called on main dispatch queue by default
        print("Download progress: \(progress.fractionCompleted)")
    }
    .responseJSON { response in
        debugPrint(response)
    }






Download Request Progress


Alamofire.download(urlString, to: destination)
    .downloadProgress(queue: DispatchQueue.utility) { progress in
        // Called on utility dispatch queue
        print("Download progress: \(progress.fractionCompleted)")
    }
    .responseJSON { response in
        debugPrint(response)
    }






Upload Request Progress


Alamofire.upload(data, to: urlString, withMethod: .post)
    .uploadProgress { progress in
        // Called on main dispatch queue by default
        print("Upload progress: \(progress.fractionCompleted)")
    }
    .downloadProgress { progress in
        // Called on main dispatch queue by default
        print("Download progress: \(progress.fractionCompleted)")
    }
    .responseData { response in
        debugPrint(response)
    }






It’s now easy to differentiate between upload and download progress for upload requests.



See PR-1455 [https://github.com/Alamofire/Alamofire/pull/1455] for more info.






Download File Destinations


In Alamofire 3.x, successful download requests would always move the temporary file to a final destination URL provided by the destination closure. While this was a nice convenience, it had several limitations:



		Forced - The API forces you to provide a destination closure to move the file even if you have a valid use case for not moving it.


		Limiting - There was no way to adjust the file system prior to moving the file.
		What if you need to delete a pre-existing file at the destination URL before moving the temporary file?


		What if you need to create intermediate directories to the destination URL before moving the temporary file?











These limitations led to several enhancements in Alamofire 4. The first of which is the optionality of the destination closure. Now, by default, the destination closure is nil which means the file is not moved anywhere on the file system and the temporary URL is returned.


Alamofire.download(urlString).responseData { response in
    print("Temporary URL: \(response.temporaryURL)")
}







We’ll cover the DownloadResponse type in more detail in the Reponse Serializers section.






Download Options


The other major change made was to add download options to the destination closure allowing more file system control over the move operation. To accomplish this, the DownloadOptions type was created and added to the DownloadFileDestination closure.


public typealias DownloadFileDestination = (
    _ temporaryURL: URL,
    _ response: HTTPURLResponse)
    -> (destinationURL: URL, options: DownloadOptions)






The two currently supported DownloadOptions are:



		.createIntermediateDirectories - Creates intermediate directories for the destination URL if specified.


		.removePreviousFile - Removes a previous file from the destination URL if specified.





They can then be used as follows:


let destination: DownloadRequest.DownloadFileDestination = { _, _ in 
    return (fileURL, [.removePreviousFile, .createIntermediateDirectories]) 
}

Alamofire.download(urlString, to: destination).response { response in
    debugPrint(response)
}






If an error occurs during the file system operations, the error on the DownloadResponse will be of type URLError.



See PR-1462 [https://github.com/Alamofire/Alamofire/pull/1462] for more info.








Response Validation


There were several opportunity areas for improving the response validation system in Alamofire 4. These areas included:



		Exposing the underlying data to the Validation closure.


		Custom validation between different Request subclasses types allowing temporaryURL and destinationURL to be exposed for download requests.





By creating Request subclasses, the validation closure typealias and request APIs were able to be tailored to each request type.



Data Request


The Validation closure exposed on the DataRequest (inherited by UploadRequest) is now as follows:


extension DataRequest {
    public typealias Validation = (URLRequest?, HTTPURLResponse, Data?) -> ValidationResult
}






By exposing the Data? property directly in the closure, you no longer have to write an extension on Request to access it. Now you can do something like this:


Alamofire.request(urlString)
    .validate { request, response, data in
        guard let data = data else { return .failure(customError) }

        // 1) Validate the response to make sure everything looks good
        // 2) If validation fails, you can now parse the error message out of the
        //    data if necessary and add that to your custom error if you wish.

        return .success
    }
    .response { response in
        debugPrint(response)
    }









Download Request


The Validation closure on the DownloadRequest is very similar to the DataRequest API, but tailored more to downloads.


extension DownloadRequest {
    public typealias Validation = (
        _ request: URLRequest?, 
        _ response: HTTPURLResponse, 
        _ temporaryURL: URL?, 
        _ destinationURL: URL?) 
        -> ValidationResult
}






The temporaryURL and destinationURL parameters now allow you access the data returned by the server directly in an inline closure. This allows you to inspect the data inside the file if you’ve determined you need to in order to create a custom error.


Alamofire.download(urlString)
    .validate { request, response, temporaryURL, destinationURL in
        guard let fileURL = temporaryURL else { return .failure(customError) }

        do {
            let _ = try Data(contentsOf: fileURL)
            return .success
        } catch {
            return .failure(customError)
        }
    }
    .response { response in
        debugPrint(response)
    }






By exposing the underlying server data directly to the inline closures, error messages embedded in those responses can be parsed out inside the Validation closure to create a custom error including the server error message. If the payload is the same schema as used in a response serializer closure, the response serializer could be called to parse out the error message rather than duplicating the logic. For an example of how to do this, please refer to the README.



See PR-1461 [https://github.com/Alamofire/Alamofire/pull/1461] for more info.








Response Serializers


The response serialization system in Alamofire 3.x had several pretty severe limitations:



		Response serialization APIs could be applied to download and stream requests but resulted in undefined behavior.
		How do you access the fileURL when a download is complete?


		What would responseData, responseString or responseJSON do when chained onto a download request? A stream request?








		The response API returned 4 parameters instead of an encapsulating Response type.
		The biggest issue here is that any change to that API could not be done in a backwards compatible manner.


		Created confusion when switching between the serialized and unserialized APIs which led to difficult to debug compiler errors.











As you can see, there were some very strong limitations to this system in Alamofire 3.x. Therefore, in Alamofire 4, the Request type was first broken down into subclasses, which opened up the opportunity to create customized response serializers and APIs for specific types of requests. Before getting to far into response serializers, we should first walk through the new Response types.



Default Data Response


The DefaultDataResponse represents an unserialized server response. There’s no Alamofire processing that happens, it just collects all the response information from the SessionDelegate APIs and returns it in a simple struct.


public struct DefaultDataResponse {
    public let request: URLRequest?
    public let response: HTTPURLResponse?
    public let data: Data?
    public let error: Error?
    public var metrics: URLSessionTaskMetrics? { return _metrics as? URLSessionTaskMetrics }
}






This is the type of response you will get back from the DataRequest.response API.


Alamofire.request(urlString).response { response in
    debugPrint(response)
}

Alamofire.upload(file, to: urlString).response { response in
    debugPrint(response)
}









Data Response


The generic DataResponse type is the same as the generic Response in Alamofire 3.x, but refactored and contains the new metrics property.


public struct DataResponse<Value> {
    public let request: URLRequest?
    public let response: HTTPURLResponse?
    public let data: Data?
    public let result: Result<Value>
    public let timeline: Timeline
    public var metrics: URLSessionTaskMetrics? { return _metrics as? URLSessionTaskMetrics }
}






You still have access to the same response serialization APIs as before on the DataRequest and UploadRequest types.


Alamofire.request(urlString).responseJSON { response in
    debugPrint(response)
    print(response.result.isSuccess)
}

Alamofire.upload(fileURL, to: urlString).responseData { response in
    debugPrint(response)
    print(response.result.isSuccess)
}









Default Download Response


Since downloads work differently than data and upload requests, Alamofire 4 contains custom download Response types tailored to their behavior. The DefaultDownloadResponse type represents an unserialized server response for a DownloadRequest that collects all the SessionDelegate information into a simple struct.


public struct DefaultDownloadResponse {
    public let request: URLRequest?
    public let response: HTTPURLResponse?
    public let temporaryURL: URL?
    public let destinationURL: URL?
    public let resumeData: Data?
    public let error: Error?
    public var metrics: URLSessionTaskMetrics? { return _metrics as? URLSessionTaskMetrics }
}






The DefaultDownloadResponse type is returned when using the new DownloadRequest.response API.


Alamofire.download(urlString).response { response in
    debugPrint(response)
    print(response.temporaryURL)
}









Download Response


The new generic DownloadResponse type is similar to the generic DataResponse type, but contains information tailored to download requests. The DownloadResponse type is returned when one of four new APIs exposed on the DownloadRequest type. These new APIs match the DataRequest ones, and provide the same functionality by loading the data from the underlying temporary or destination URL.


Alamofire.download(urlString, to: destination)
    .responseData { response in
        debugPrint(response)
    }
    .responseString { response in
        debugPrint(response)
    }
    .responseJSON { response in
        debugPrint(response)
    }
    .responsePropertyList { response in
        debugPrint(response)
    }






These new response serialization APIs make it MUCH easier to download a request to a file and serialize the response all in a single call.





Custom Response Serializers


If you have created your own custom response serializers, you may want to extend support across both data and download requests similar to what we’ve done with the Alamofire response serializers. If you do decide to do this, take a close look at how Alamofire shares the response serializer implementation between both request types by moving the implementation to the Request. This allowed us to DRY up our logic to avoid duplication between types.



See PR-1457 [https://github.com/Alamofire/Alamofire/pull/1457] for more info.













          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/down-pressed.png





waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/Carthage/Checkouts/SwiftyUserDefaults/README.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  
SwiftyUserDefaults


[image: Platforms]
[image: CI Status] [https://travis-ci.org/radex/SwiftyUserDefaults]
[image: CocoaPods] [https://cocoapods.org/pods/SwiftyUserDefaults]
[image: Carthage compatible]
[image: Swift version]



Modern Swift API for NSUserDefaults



SwiftyUserDefaults makes user defaults enjoyable to use by combining expressive Swifty API with the benefits of static typing. Define your keys in one place, use value types easily, and get extra safety and convenient compile-time checks for free.


Read Statically-typed NSUserDefaults [http://radex.io/swift/nsuserdefaults/static] for more information about this project.





    Features •
    Usage •
    Custom types •
    Traditional API • 
    Installation • 
    More info



-------




Features


There’s only two steps to using SwiftyUserDefaults:


Step 1: Define your keys


extension DefaultsKeys {
    static let username = DefaultsKey<String?>("username")
    static let launchCount = DefaultsKey<Int>("launchCount")
}






Step 2: Just use it!


// Get and set user defaults easily
let username = Defaults[.username]
Defaults[.hotkeyEnabled] = true

// Modify value types in place
Defaults[.launchCount] += 1
Defaults[.volume] -= 0.1
Defaults[.strings] += "… can easily be extended!"

// Use and modify typed arrays
Defaults[.libraries].append("SwiftyUserDefaults")
Defaults[.libraries][0] += " 2.0"

// Easily work with custom serialized types
Defaults[.color] = NSColor.white
Defaults[.color]?.whiteComponent // => 1.0






The convenient dot syntax is only available if you define your keys by extending magic DefaultsKeys class. You can also just pass the DefaultsKey value in square brackets, or use a more traditional string-based API. How? Keep reading.





Usage



Define your keys


To get the most out of SwiftyUserDefaults, define your user defaults keys ahead of time:


let colorKey = DefaultsKey<String>("color")






Just create a DefaultsKey object, put the type of the value you want to store in angle brackets, the key name in parentheses, and you’re good to go.


You can now use the Defaults shortcut to access those values:


Defaults[colorKey] = "red"
Defaults[colorKey] // => "red", typed as String






The compiler won’t let you set a wrong value type, and fetching conveniently returns String.





Take shortcuts


For extra convenience, define your keys by extending magic DefaultsKeys class and adding static properties:


extension DefaultsKeys {
    static let username = DefaultsKey<String?>("username")
    static let launchCount = DefaultsKey<Int>("launchCount")
}






And use the shortcut dot syntax:


Defaults[.username] = "joe"
Defaults[.launchCount]









Just use it!


You can easily modify value types (strings, numbers, array) in place, as if you were working with a plain old dictionary:


// Modify value types in place
Defaults[.launchCount] += 1
Defaults[.volume] -= 0.1
Defaults[.strings] += "… can easily be extended!"

// Use and modify typed arrays
Defaults[.libraries].append("SwiftyUserDefaults")
Defaults[.libraries][0] += " 2.0"

// Easily work with custom serialized types
Defaults[.color] = NSColor.white
Defaults[.color]?.whiteComponent // => 1.0









Supported types


SwiftyUserDefaults supports all of the standard NSUserDefaults types, like strings, numbers, booleans, arrays and dictionaries.


Here’s a full table:


| Optional variant       | Non-optional variant  | Default value |
|————————|———————–|—————|
| String?              | String              | ""          |
| Int?                 | Int                 | 0           |
| Double?              | Double              | 0.0         |
| Bool?                | Bool                | false       |
| Data?                | Data                | Data()      |
| [Any]?               | [Any]               | []          |
| [String: Any]?       | [String: Any]       | [:]         |
| Date?                | n/a                   | n/a           |
| URL?                 | n/a                   | n/a           |
| Any?                 | n/a                   | n/a           |


You can mark a type as optional to get nil if the key doesn’t exist. Otherwise, you’ll get a default value that makes sense for a given type.



Typed arrays


Additionally, typed arrays are available for these types:


| Array type | Optional variant |
|————|——————|
| [String] | [String]?      |
| [Int]    | [Int]?         |
| [Double] | [Double]?      |
| [Bool]   | [Bool]?        |
| [Data]   | [Data]?        |
| [Date]   | [Date]?        |







Custom types


You can easily store custom NSCoding-compliant types by extending UserDefaults with this stub subscript:


extension UserDefaults {
    subscript(key: DefaultsKey<NSColor?>) -> NSColor? {
        get { return unarchive(key) }
        set { archive(key, newValue) }
    }
}






Just copy&paste this and change NSColor to your class name.


Here’s a usage example:


extension DefaultsKeys {
    static let color = DefaultsKey<NSColor?>("color")
}

Defaults[.color] // => nil
Defaults[.color] = NSColor.white
Defaults[.color] // => w 1.0, a 1.0
Defaults[.color]?.whiteComponent // => 1.0







Custom types with default values


If you don’t want to deal with nil when fetching a user default value, you can remove ? marks and supply the default value, like so:


extension UserDefaults {
    subscript(key: DefaultsKey<NSColor>) -> NSColor {
        get { return unarchive(key) ?? NSColor.clear }
        set { archive(key, newValue) }
    }
}









Enums


In addition to NSCoding, you can store enum values the same way:


enum MyEnum: String {
    case A, B, C
}

extension UserDefaults {
    subscript(key: DefaultsKey<MyEnum?>) -> MyEnum? {
        get { return unarchive(key) }
        set { archive(key, newValue) }
    }
}






The only requirement is that the enum has to be RawRepresentable by a simple type like String or Int.







Existence


if !Defaults.hasKey(.hotkey) {
    Defaults.remove(.hotkeyOptions)
}






You can use the hasKey method to check for key’s existence in the user defaults. remove() is an alias for removeObjectForKey(), that also works with DefaultsKeys shortcuts.





Remove all keys


To reset user defaults, use removeAll method.


Defaults.removeAll()









Shared user defaults


If you’re sharing your user defaults between different apps or an app and its extensions, you can use SwiftyUserDefaults by overriding the Defaults shortcut with your own. Just add in your app:


var Defaults = UserDefaults(suiteName: "com.my.app")!











Traditional API


There’s also a more traditional string-based API available. This is considered legacy API, and it’s recommended that you use statically defined keys instead.


Defaults["color"].string            // returns String?
Defaults["launchCount"].int         // returns Int?
Defaults["chimeVolume"].double      // returns Double?
Defaults["loggingEnabled"].bool     // returns Bool?
Defaults["lastPaths"].array         // returns [Any]?
Defaults["credentials"].dictionary  // returns [String: Any]?
Defaults["hotkey"].data             // returns Data?
Defaults["firstLaunchAt"].date      // returns Date?
Defaults["anything"].object         // returns Any?
Defaults["anything"].number         // returns NSNumber?






When you don’t want to deal with the nil case, you can use these helpers that return a default value for non-existing defaults:


Defaults["color"].stringValue            // defaults to ""
Defaults["launchCount"].intValue         // defaults to 0
Defaults["chimeVolume"].doubleValue      // defaults to 0.0
Defaults["loggingEnabled"].boolValue     // defaults to false
Defaults["lastPaths"].arrayValue         // defaults to []
Defaults["credentials"].dictionaryValue  // defaults to [:]
Defaults["hotkey"].dataValue             // defaults to Data()









Installation


Note: If you’re running Swift 2, use SwiftyUserDefaults v2.2.1 [https://github.com/radex/SwiftyUserDefaults/tree/2.2.1]



CocoaPods


If you’re using CocoaPods, just add this line to your Podfile:


pod 'SwiftyUserDefaults'






Install by running this command in your terminal:


pod install






Then import the library in all files where you use it:


import SwiftyUserDefaults









Carthage


Just add to your Cartfile:


github "radex/SwiftyUserDefaults"









Manually


Simply copy Sources/SwiftyUserDefaults.swift to your Xcode project.







More like this


If you like SwiftyUserDefaults, check out SwiftyTimer [https://github.com/radex/SwiftyTimer], which applies the same swifty approach to NSTimer.


You might also be interested in my blog posts which explain the design process behind those libraries:



		Swifty APIs: NSUserDefaults [http://radex.io/swift/nsuserdefaults/]


		Statically-typed NSUserDefaults [http://radex.io/swift/nsuserdefaults/static]


		Swifty APIs: NSTimer [http://radex.io/swift/nstimer/]


		Swifty methods [http://radex.io/swift/methods/]






Contributing


If you have comments, complaints or ideas for improvements, feel free to open an issue or a pull request. Or ping me on Twitter [http://twitter.com/radexp].





Author and license


Radek Pietruszewski



		github.com/radex [http://github.com/radex]


		twitter.com/radexp [http://twitter.com/radexp]


		radex.io [http://radex.io]


		this.is@radex.io





SwiftyUserDefaults is available under the MIT license. See the LICENSE file for more info.










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/Carthage/Checkouts/SwiftyUserDefaults/CHANGELOG.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  
3.0.0 (2016-09-14)


This is the Swift 3 update version.


It contains no major changes in the library itself, however it does change some APIs because of Swift 3 requirements.



		Update documentation and README for Swift 3


		Updated for Swift 3 and Xcode 8 compatibility #91 @askari01


		Updated for Swift 3 beta 4 #102 @rinatkhanov


		Updated for Swift 3 beta 6 #106 @ldiqual










2.2.1 (2016-08-03)



		NSUserDefaults.set() is now public (useful for adding support for custom types) #85 @goktugyil


		Support for Xcode 8 (Swift 2.3) for Carthage users #100 @KevinVitale








2.2.0 (2016-04-10)



		Support for archive() and unarchive() on RawRepresentable types


		Improved documentation








2.1.3 (2016-03-02)



		Fix Carthage build


		Suppress deprecation warnings in tests








2.1.2 (2016-03-01)



		Fixed infinite loop bug


		Added Travis CI integration


		Added Swift Package Manager support








2.1.1 (2016-02-29)



		Documentation improvements








2.1.0 (2016-02-29)



		Added removeAll()


		Added tvOS and watchOS support


		Fixed error when linking SwiftyUserDefaults with app extension targets


		Minor tweaks and fixes








2.0.0 (2015-09-18)



		Introducing statically-typed keys
		Define keys using DefaultsKey


		Extend magic DefaultsKeys class to get access to Defaults[.foo] shortcut


		Support for all basic types, both in optional and non-optional forms


		Support for arrays of basic types, such as [Double] or [String]?


		Support for basic [String: AnyObject] dictionaries


		hasKey() and remove() for static keys


		You can define support for static keys of custom NSCoder-compliant types


		Support for NSURL in statically-typed keys








		[Carthage] Added OS X support





Deprecations



		+=, ++, ?= operators are now deprecated in favor of statically-typed keys










1.3.0 (2015-06-29)



		Added non-optional Proxy getters
		string -> stringValue, etc.


		non-optional support for all except NSObject and NSDate getters








		Fixed Carthage (Set iOS Deployment target to 8.0)


		Converted tests to XCTest








1.2.0 (2015-06-15)



		Carthage support








1.1.0 (2015-04-13)



		Swift 1.2 compatibility


		Fixed podspec








1.0.0 (2015-01-26)



		Initial release


		Proxy getters:
		String, Int, Double, Bool


		NSArray, NSDictionary


		NSDate, NSData


		NSNumber, NSObject








		subscript setter


		hasKey()


		remove()


		?=, +=, ++ operators on Proxy


		global Defaults shortcut









          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/Carthage/Checkouts/SwiftyJSON/CHANGELOG.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  
Change Log



Unreleased [https://github.com/SwiftyJSON/SwiftyJSON/tree/HEAD]


Full Changelog [https://github.com/SwiftyJSON/SwiftyJSON/compare/2.2.0...HEAD]


Closed issues:



		156 compiler errors Mavericks + Xcode 6.2 #220 [https://github.com/SwiftyJSON/SwiftyJSON/issues/220]


		‘AnyObject’ is not convertible to ‘String’; did you mean to use ‘as!‘ to force downcast? #218 [https://github.com/SwiftyJSON/SwiftyJSON/issues/218]


		pod -> SwiftyJSON (2.1.3) is out-of-date if we compare it to the version mentioned in README.md file. #212 [https://github.com/SwiftyJSON/SwiftyJSON/issues/212]


		无法获取到 2.2版本的 #211 [https://github.com/SwiftyJSON/SwiftyJSON/issues/211]


		Publish Podspec for version 2.2.0 #210 [https://github.com/SwiftyJSON/SwiftyJSON/issues/210]


		dropping elements? or am I doing something wrong? #209 [https://github.com/SwiftyJSON/SwiftyJSON/issues/209]


		Not working with Swift 1.2 #208 [https://github.com/SwiftyJSON/SwiftyJSON/issues/208]


		在 Mac 项目里用 Carthage 无法编译 #193 [https://github.com/SwiftyJSON/SwiftyJSON/issues/193]


		使用中发现解析效率比较低 #190 [https://github.com/SwiftyJSON/SwiftyJSON/issues/190]


		Looks like it will require a change of “as”es to “as!” for Swift 1.2... #150 [https://github.com/SwiftyJSON/SwiftyJSON/issues/150]


		No response appeared #118 [https://github.com/SwiftyJSON/SwiftyJSON/issues/118]


		Swift Optional Values from JSON #116 [https://github.com/SwiftyJSON/SwiftyJSON/issues/116]


		It seems not easy to manipulate an array or dictionary? #110 [https://github.com/SwiftyJSON/SwiftyJSON/issues/110]





Merged pull requests:



		Fix for xcode 6.3..1 issue #224 [https://github.com/SwiftyJSON/SwiftyJSON/pull/224] (datomnurdin [https://github.com/datomnurdin])


		Update the first two examples snippets #223 [https://github.com/SwiftyJSON/SwiftyJSON/pull/223] (kmikael [https://github.com/kmikael])


		Allow .number to parse number from string instead of just numberValue #219 [https://github.com/SwiftyJSON/SwiftyJSON/pull/219] (yonaskolb [https://github.com/yonaskolb])


		Fixed spelling and grammar mistakes in README.md. Made some swift syntax... #214 [https://github.com/SwiftyJSON/SwiftyJSON/pull/214] (pRizz [https://github.com/pRizz])








2.2.0 [https://github.com/SwiftyJSON/SwiftyJSON/tree/2.2.0] (2015-04-13)


Full Changelog [https://github.com/SwiftyJSON/SwiftyJSON/compare/2.1.3...2.2.0]


Closed issues:



		init doesn’t set type correctly #206 [https://github.com/SwiftyJSON/SwiftyJSON/issues/206]


		SwitfyJSON breaks with update to iOS 8.3 & Xcode 6.3 #200 [https://github.com/SwiftyJSON/SwiftyJSON/issues/200]


		‘NSString?’ is not convertible to ‘String?’ error with Swift 1.2 #198 [https://github.com/SwiftyJSON/SwiftyJSON/issues/198]


		I can’t install it by carthage #181 [https://github.com/SwiftyJSON/SwiftyJSON/issues/181]


		Can’t compare JSON to Float #171 [https://github.com/SwiftyJSON/SwiftyJSON/issues/171]


		extend data to results #160 [https://github.com/SwiftyJSON/SwiftyJSON/issues/160]


		Create JSON From String #159 [https://github.com/SwiftyJSON/SwiftyJSON/issues/159]


		No Cocoapods support for iOS 7 #151 [https://github.com/SwiftyJSON/SwiftyJSON/issues/151]


		Update to Swift 1.2 #148 [https://github.com/SwiftyJSON/SwiftyJSON/issues/148]


		Url slashes ‘ / ‘ are being replaced with ‘ / ‘ #145 [https://github.com/SwiftyJSON/SwiftyJSON/issues/145]


		Issues when using carthage #144 [https://github.com/SwiftyJSON/SwiftyJSON/issues/144]


		Can not convert [JSON] to JSON #143 [https://github.com/SwiftyJSON/SwiftyJSON/issues/143]


		[!] Unable to find a specification for SwiftyJSON \(= 2.1.3\) #141 [https://github.com/SwiftyJSON/SwiftyJSON/issues/141]


		Deployment target iOS 7 or iOS 8? #131 [https://github.com/SwiftyJSON/SwiftyJSON/issues/131]


		Cocoapods support #126 [https://github.com/SwiftyJSON/SwiftyJSON/issues/126]





Merged pull requests:



		Only building tests for testing #207 [https://github.com/SwiftyJSON/SwiftyJSON/pull/207] (spanage [https://github.com/spanage])


		Added compatibility with Swift 1.2. #204 [https://github.com/SwiftyJSON/SwiftyJSON/pull/204] (jankaltoun [https://github.com/jankaltoun])


		Fix for issue #200 #203 [https://github.com/SwiftyJSON/SwiftyJSON/pull/203] (chschu [https://github.com/chschu])


		Updated to Swift 1.2 #202 [https://github.com/SwiftyJSON/SwiftyJSON/pull/202] (scottdelly [https://github.com/scottdelly])


		Updated to Swift 1.2 #201 [https://github.com/SwiftyJSON/SwiftyJSON/pull/201] (scottdelly [https://github.com/scottdelly])


		Update to Swift 1.2 #199 [https://github.com/SwiftyJSON/SwiftyJSON/pull/199] (kimdv [https://github.com/kimdv])


		Should not get subscript from AnyObject. #196 [https://github.com/SwiftyJSON/SwiftyJSON/pull/196] (Candyroot [https://github.com/Candyroot])


		Update for Swift 1.2 #195 [https://github.com/SwiftyJSON/SwiftyJSON/pull/195] (justinmakaila [https://github.com/justinmakaila])


		Update README.md #194 [https://github.com/SwiftyJSON/SwiftyJSON/pull/194] (manijshrestha [https://github.com/manijshrestha])


		Optimize the code to avoid useless casts to swift arrays. #188 [https://github.com/SwiftyJSON/SwiftyJSON/pull/188] (mirion [https://github.com/mirion])


		Fixed the buildable name in the OSX scheme #187 [https://github.com/SwiftyJSON/SwiftyJSON/pull/187] (cnoon [https://github.com/cnoon])


		Updated code signing identities for OSX target and tests #186 [https://github.com/SwiftyJSON/SwiftyJSON/pull/186] (cnoon [https://github.com/cnoon])


		Fix int overflow compile error #178 [https://github.com/SwiftyJSON/SwiftyJSON/pull/178] (mono0926 [https://github.com/mono0926])


		Fixed a bug when accessing a value directly via a string subscript when the current object is a dictionary #176 [https://github.com/SwiftyJSON/SwiftyJSON/pull/176] (JosephDuffy [https://github.com/JosephDuffy])


		Better support for carthage users #174 [https://github.com/SwiftyJSON/SwiftyJSON/pull/174] (rromanchuk [https://github.com/rromanchuk])


		Fixes a 32bit/64bit issue. #172 [https://github.com/SwiftyJSON/SwiftyJSON/pull/172] (enhorn [https://github.com/enhorn])


		Update README for new Cocoapods #170 [https://github.com/SwiftyJSON/SwiftyJSON/pull/170] (joelparkerhenderson [https://github.com/joelparkerhenderson])


		Fixed a crash when entering json[“NotExistPath”] #167 [https://github.com/SwiftyJSON/SwiftyJSON/pull/167] (ybeapps [https://github.com/ybeapps])


		Adding Swift 1.2 support #158 [https://github.com/SwiftyJSON/SwiftyJSON/pull/158] (Jasdev [https://github.com/Jasdev])


		Fix issues with the OS X target and scheme #156 [https://github.com/SwiftyJSON/SwiftyJSON/pull/156] (rastersize [https://github.com/rastersize])


		Fix issues with the OS X target and scheme #155 [https://github.com/SwiftyJSON/SwiftyJSON/pull/155] (rastersize [https://github.com/rastersize])


		Remove SwiftJSON.xcodeproj/xcuserdata #154 [https://github.com/SwiftyJSON/SwiftyJSON/pull/154] (rastersize [https://github.com/rastersize])


		Change to not build test when building iOS framework target [Xcode 6.3 + external tools] #153 [https://github.com/SwiftyJSON/SwiftyJSON/pull/153] (rastersize [https://github.com/rastersize])


		Fix tests not building for 32-bit [Xcode 6.3] #152 [https://github.com/SwiftyJSON/SwiftyJSON/pull/152] (rastersize [https://github.com/rastersize])


		Swift 1.2 compatibility fixes #149 [https://github.com/SwiftyJSON/SwiftyJSON/pull/149] (darrarski [https://github.com/darrarski])


		[README.md] Setter for JSON array should use arrayObject not array  #146 [https://github.com/SwiftyJSON/SwiftyJSON/pull/146] (lwu [https://github.com/lwu])


		add missing ` in comments #142 [https://github.com/SwiftyJSON/SwiftyJSON/pull/142] (zhxnlai [https://github.com/zhxnlai])


		Fix README.md nested example #139 [https://github.com/SwiftyJSON/SwiftyJSON/pull/139] (watsonbox [https://github.com/watsonbox])


		Shared OSX Scheme. OSX target fixes. #138 [https://github.com/SwiftyJSON/SwiftyJSON/pull/138] (haveahennessy [https://github.com/haveahennessy])


		Casting to NSDictionary instead of [String : AnyObject] #137 [https://github.com/SwiftyJSON/SwiftyJSON/pull/137] (clwkct [https://github.com/clwkct])


		Update README.md #136 [https://github.com/SwiftyJSON/SwiftyJSON/pull/136] (esbenvb [https://github.com/esbenvb])


		Update README.md #135 [https://github.com/SwiftyJSON/SwiftyJSON/pull/135] (esbenvb [https://github.com/esbenvb])


		Fixed the broken Carthage OS X Support. #134 [https://github.com/SwiftyJSON/SwiftyJSON/pull/134] (remaerd [https://github.com/remaerd])


		Prefixed “SequenceType” extension with Module name #124 [https://github.com/SwiftyJSON/SwiftyJSON/pull/124] (ravero [https://github.com/ravero])


		Code cleaning #123 [https://github.com/SwiftyJSON/SwiftyJSON/pull/123] (wiruzx [https://github.com/wiruzx])








2.1.3 [https://github.com/SwiftyJSON/SwiftyJSON/tree/2.1.3] (2015-01-10)


Full Changelog [https://github.com/SwiftyJSON/SwiftyJSON/compare/2.1.2...2.1.3]


Closed issues:



		Cannot install using Carthage #122 [https://github.com/SwiftyJSON/SwiftyJSON/issues/122]


		Use of unresolved identifier ‘dataFromNetworking’ #112 [https://github.com/SwiftyJSON/SwiftyJSON/issues/112]


		I can’t parse out the string like “{a:5}” #109 [https://github.com/SwiftyJSON/SwiftyJSON/issues/109]


		Cocoapods integration #108 [https://github.com/SwiftyJSON/SwiftyJSON/issues/108]


		Compile Error In Loop Array #107 [https://github.com/SwiftyJSON/SwiftyJSON/issues/107]


		Support for Carthage #105 [https://github.com/SwiftyJSON/SwiftyJSON/issues/105]





Merged pull requests:



		Minor grammar fixes to README #128 [https://github.com/SwiftyJSON/SwiftyJSON/pull/128] (johngoren [https://github.com/johngoren])


		Updated because podspec is now available... #127 [https://github.com/SwiftyJSON/SwiftyJSON/pull/127] (johngoren [https://github.com/johngoren])


		Fix access modificator of isEmpty property #121 [https://github.com/SwiftyJSON/SwiftyJSON/pull/121] (wiruzx [https://github.com/wiruzx])


		Make framework extension friendly #119 [https://github.com/SwiftyJSON/SwiftyJSON/pull/119] (technomage [https://github.com/technomage])


		add a new way to access Json #117 [https://github.com/SwiftyJSON/SwiftyJSON/pull/117] (zhanghao111111111 [https://github.com/zhanghao111111111])


		fix the typos on the code snippets and the links in the TOC on README #115 [https://github.com/SwiftyJSON/SwiftyJSON/pull/115] (floydpink [https://github.com/floydpink])


		Use Mac’ codesign identities for OSX targets #114 [https://github.com/SwiftyJSON/SwiftyJSON/pull/114] (max-potapov [https://github.com/max-potapov])








2.1.2 [https://github.com/SwiftyJSON/SwiftyJSON/tree/2.1.2] (2014-12-13)


Full Changelog [https://github.com/SwiftyJSON/SwiftyJSON/compare/2.1.1...2.1.2]


Closed issues:



		Why can’t we parse a rawString back to json object? #101 [https://github.com/SwiftyJSON/SwiftyJSON/issues/101]


		Have a Piece of Code that might be of Value to SwiftyJSon #97 [https://github.com/SwiftyJSON/SwiftyJSON/issues/97]


		build osx application (command line tool) with swiftyjson error #96 [https://github.com/SwiftyJSON/SwiftyJSON/issues/96]


		这个应该是bug吧，支持的不是很够 #95 [https://github.com/SwiftyJSON/SwiftyJSON/issues/95]


		Length of an array #90 [https://github.com/SwiftyJSON/SwiftyJSON/issues/90]


		Compilation error #89 [https://github.com/SwiftyJSON/SwiftyJSON/issues/89]


		Can’t set value #88 [https://github.com/SwiftyJSON/SwiftyJSON/issues/88]


		Examples with AFHTTPSessionManager? #86 [https://github.com/SwiftyJSON/SwiftyJSON/issues/86]





Merged pull requests:



		Update README.md to add Carthage instructions #113 [https://github.com/SwiftyJSON/SwiftyJSON/pull/113] (justinmakaila [https://github.com/justinmakaila])


		Improve init performance for dictionaries and arrays #111 [https://github.com/SwiftyJSON/SwiftyJSON/pull/111] (avorobjov [https://github.com/avorobjov])


		Fix NSNumber != func #106 [https://github.com/SwiftyJSON/SwiftyJSON/pull/106] (briankracoff [https://github.com/briankracoff])


		Carthage Support #104 [https://github.com/SwiftyJSON/SwiftyJSON/pull/104] (justinmakaila [https://github.com/justinmakaila])


		Added read option for date strings #103 [https://github.com/SwiftyJSON/SwiftyJSON/pull/103] (Dschee [https://github.com/Dschee])


		Add Podspec (Correct mblsha podspec) #100 [https://github.com/SwiftyJSON/SwiftyJSON/pull/100] (ValCapri [https://github.com/ValCapri])


		Add podspec + make it work as a framework #99 [https://github.com/SwiftyJSON/SwiftyJSON/pull/99] (mblsha [https://github.com/mblsha])


		Adding new Feature: JsonMapper #98 [https://github.com/SwiftyJSON/SwiftyJSON/pull/98] (Drogenix [https://github.com/Drogenix])


		Change recommendation for Alamofire integration #92 [https://github.com/SwiftyJSON/SwiftyJSON/pull/92] (JonathanPorta [https://github.com/JonathanPorta])








2.1.1 [https://github.com/SwiftyJSON/SwiftyJSON/tree/2.1.1] (2014-11-12)


Full Changelog [https://github.com/SwiftyJSON/SwiftyJSON/compare/2.1.0...2.1.1]


Closed issues:



		NSDictionary to json string to json object #93 [https://github.com/SwiftyJSON/SwiftyJSON/issues/93]


		Error: use of unresolved identifier dataFromNetworking #82 [https://github.com/SwiftyJSON/SwiftyJSON/issues/82]


		Type [SubscriptType] Does not conform to protocol ‘StringLiteralConvertible’ #81 [https://github.com/SwiftyJSON/SwiftyJSON/issues/81]


		Doesn’t conform literal protocols #80 [https://github.com/SwiftyJSON/SwiftyJSON/issues/80]


		iOS 8.1 compatability #79 [https://github.com/SwiftyJSON/SwiftyJSON/issues/79]


		Xcode 6.1 Compatibility #78 [https://github.com/SwiftyJSON/SwiftyJSON/issues/78]


		Problem with xCode 6.1 #76 [https://github.com/SwiftyJSON/SwiftyJSON/issues/76]


		Compilation errors #75 [https://github.com/SwiftyJSON/SwiftyJSON/issues/75]





Merged pull requests:



		Renamed type ‘Unknow’ to ‘Unknown’ #94 [https://github.com/SwiftyJSON/SwiftyJSON/pull/94] (franklsf95 [https://github.com/franklsf95])


		Added OSX target. #91 [https://github.com/SwiftyJSON/SwiftyJSON/pull/91] (carloslozano [https://github.com/carloslozano])


		Add date ,dateValue #87 [https://github.com/SwiftyJSON/SwiftyJSON/pull/87] (muukii0803 [https://github.com/muukii0803])


		Add parse JSON Date #85 [https://github.com/SwiftyJSON/SwiftyJSON/pull/85] (ShineWu [https://github.com/ShineWu])


		Update README.md #84 [https://github.com/SwiftyJSON/SwiftyJSON/pull/84] (johngoren [https://github.com/johngoren])


		Update README.md for typos #83 [https://github.com/SwiftyJSON/SwiftyJSON/pull/83] (johngoren [https://github.com/johngoren])








2.1.0 [https://github.com/SwiftyJSON/SwiftyJSON/tree/2.1.0] (2014-10-19)


Full Changelog [https://github.com/SwiftyJSON/SwiftyJSON/compare/2.0.0...2.1.0]


Closed issues:



		32bit test failures #71 [https://github.com/SwiftyJSON/SwiftyJSON/issues/71]


		Trouble getting string representation #70 [https://github.com/SwiftyJSON/SwiftyJSON/issues/70]


		JSON keep null #69 [https://github.com/SwiftyJSON/SwiftyJSON/issues/69]


		Update .pbxproj to Deployment Target 8.0 #66 [https://github.com/SwiftyJSON/SwiftyJSON/issues/66]


		Looping not working #64 [https://github.com/SwiftyJSON/SwiftyJSON/issues/64]





Merged pull requests:



		Get number from string in JSON.number #74 [https://github.com/SwiftyJSON/SwiftyJSON/pull/74] (yonaskolb [https://github.com/yonaskolb])


		Update SwiftyJSON.swift #73 [https://github.com/SwiftyJSON/SwiftyJSON/pull/73] (MaddTheSane [https://github.com/MaddTheSane])


		Generating Raw JSON Strings #72 [https://github.com/SwiftyJSON/SwiftyJSON/pull/72] (lesmuc [https://github.com/lesmuc])


		Making SourceKit not freak out about self.object.count being called #68 [https://github.com/SwiftyJSON/SwiftyJSON/pull/68] (Noobish1 [https://github.com/Noobish1])


		Added support for Xcode 6.1 GM Seed 2. #65 [https://github.com/SwiftyJSON/SwiftyJSON/pull/65] (rosskimes [https://github.com/rosskimes])








2.0.0 [https://github.com/SwiftyJSON/SwiftyJSON/tree/2.0.0] (2014-10-08)


Full Changelog [https://github.com/SwiftyJSON/SwiftyJSON/compare/1.1.0...2.0.0]


Closed issues:



		JSON to NSData #62 [https://github.com/SwiftyJSON/SwiftyJSON/issues/62]


		Updating a json #60 [https://github.com/SwiftyJSON/SwiftyJSON/issues/60]





Merged pull requests:



		Update for new features [Issue #60] #63 [https://github.com/SwiftyJSON/SwiftyJSON/pull/63] (tangplin [https://github.com/tangplin])








1.1.0 [https://github.com/SwiftyJSON/SwiftyJSON/tree/1.1.0] (2014-10-02)


Full Changelog [https://github.com/SwiftyJSON/SwiftyJSON/compare/1.0.0...1.1.0]


Closed issues:



		Long time to parse this json #57 [https://github.com/SwiftyJSON/SwiftyJSON/issues/57]





Merged pull requests:



		Merge develop #59 [https://github.com/SwiftyJSON/SwiftyJSON/pull/59] (tangplin [https://github.com/tangplin])


		Added SwiftyJSON lazy wrapping #58 [https://github.com/SwiftyJSON/SwiftyJSON/pull/58] (k06a [https://github.com/k06a])








1.0.0 [https://github.com/SwiftyJSON/SwiftyJSON/tree/1.0.0] (2014-09-26)


Implemented enhancements:



		JNumber should be Number not double #8 [https://github.com/SwiftyJSON/SwiftyJSON/issues/8]


		Separate implementations of protocols #5 [https://github.com/SwiftyJSON/SwiftyJSON/issues/5]





Fixed bugs:



		JNumber should be Number not double #8 [https://github.com/SwiftyJSON/SwiftyJSON/issues/8]


		Fails to compile on Beta2 #1 [https://github.com/SwiftyJSON/SwiftyJSON/issues/1]





Closed issues:



		No such module “SwiftyJSON” #49 [https://github.com/SwiftyJSON/SwiftyJSON/issues/49]


		how to transfer JSONValue object to Dictionary object?  #48 [https://github.com/SwiftyJSON/SwiftyJSON/issues/48]


		JSONValue in @objc #47 [https://github.com/SwiftyJSON/SwiftyJSON/issues/47]


		SwiftyJSON.swift:331:22: Use of undeclared type ‘BooleanType’ #46 [https://github.com/SwiftyJSON/SwiftyJSON/issues/46]


		Problem converting JSONValue to AnyObject #44 [https://github.com/SwiftyJSON/SwiftyJSON/issues/44]


		Can’t use SwiftyJSON as part of a public API within a framework #42 [https://github.com/SwiftyJSON/SwiftyJSON/issues/42]


		how to add JSONValue object into exist JSONValue #40 [https://github.com/SwiftyJSON/SwiftyJSON/issues/40]


		Doesn’t work in BETA 6 #39 [https://github.com/SwiftyJSON/SwiftyJSON/issues/39]


		Can’t access property #38 [https://github.com/SwiftyJSON/SwiftyJSON/issues/38]


		Couldn’t Compile and Run  #37 [https://github.com/SwiftyJSON/SwiftyJSON/issues/37]


		Array index out of range #35 [https://github.com/SwiftyJSON/SwiftyJSON/issues/35]


		Iterating through a JSON response #32 [https://github.com/SwiftyJSON/SwiftyJSON/issues/32]


		NSNull in an array is discarded #25 [https://github.com/SwiftyJSON/SwiftyJSON/issues/25]


		Updating Dictionary #24 [https://github.com/SwiftyJSON/SwiftyJSON/issues/24]


		SourcekitService Terminated Issue #22 [https://github.com/SwiftyJSON/SwiftyJSON/issues/22]


		Code does not compile in iOS 8 Beta 3. #17 [https://github.com/SwiftyJSON/SwiftyJSON/issues/17]


		How to use .count #14 [https://github.com/SwiftyJSON/SwiftyJSON/issues/14]


		Add to cocoapods #12 [https://github.com/SwiftyJSON/SwiftyJSON/issues/12]


		String parsing #9 [https://github.com/SwiftyJSON/SwiftyJSON/issues/9]


		Cocoapods integration #4 [https://github.com/SwiftyJSON/SwiftyJSON/issues/4]


		How do I verify SwiftyJSON workS? #2 [https://github.com/SwiftyJSON/SwiftyJSON/issues/2]





Merged pull requests:



		Revert “Added rawObject method for unwrapping JSONValue enum to objects” #56 [https://github.com/SwiftyJSON/SwiftyJSON/pull/56] (tangplin [https://github.com/tangplin])


		set the default JSONReadingOptions to .AllowFragments #55 [https://github.com/SwiftyJSON/SwiftyJSON/pull/55] (tangplin [https://github.com/tangplin])


		Fix Unit Test #54 [https://github.com/SwiftyJSON/SwiftyJSON/pull/54] (lingoer [https://github.com/lingoer])


		Add NSError to Null type #53 [https://github.com/SwiftyJSON/SwiftyJSON/pull/53] (lingoer [https://github.com/lingoer])


		Refactor! #51 [https://github.com/SwiftyJSON/SwiftyJSON/pull/51] (tangplin [https://github.com/tangplin])


		Rename LISCENSE to LICENSE #50 [https://github.com/SwiftyJSON/SwiftyJSON/pull/50] (fixe [https://github.com/fixe])


		Added rawObject method for unwrapping JSONValue enum to objects #45 [https://github.com/SwiftyJSON/SwiftyJSON/pull/45] (k06a [https://github.com/k06a])


		made JSONValue public for usage in framework APIs #43 [https://github.com/SwiftyJSON/SwiftyJSON/pull/43] (Dschee [https://github.com/Dschee])


		Adding public/private modifiers so that SwiftyJSON can be used as a framework #41 [https://github.com/SwiftyJSON/SwiftyJSON/pull/41] (jansabbe [https://github.com/jansabbe])


		Rename LISCENSE to LICENSE #36 [https://github.com/SwiftyJSON/SwiftyJSON/pull/36] (kriswallsmith [https://github.com/kriswallsmith])


		Fix for Xcode 6 beta 5 changes #34 [https://github.com/SwiftyJSON/SwiftyJSON/pull/34] (FahimF [https://github.com/FahimF])


		Use BooleanType instead of LogicValue for Beta 5 #33 [https://github.com/SwiftyJSON/SwiftyJSON/pull/33] (venables [https://github.com/venables])


		Support for JSON as string #31 [https://github.com/SwiftyJSON/SwiftyJSON/pull/31] (bsvingen [https://github.com/bsvingen])


		Support building JSON messages in code. #30 [https://github.com/SwiftyJSON/SwiftyJSON/pull/30] (johnno1962 [https://github.com/johnno1962])


		Update project to include access modifiers from Xcode beta 4. #29 [https://github.com/SwiftyJSON/SwiftyJSON/pull/29] (Baltoli [https://github.com/Baltoli])


		jsonvalue now conforms to sequence protocol for array values #28 [https://github.com/SwiftyJSON/SwiftyJSON/pull/28] (NatashaTheRobot [https://github.com/NatashaTheRobot])


		updated array and dictionary syntax for beta3 #27 [https://github.com/SwiftyJSON/SwiftyJSON/pull/27] (NatashaTheRobot [https://github.com/NatashaTheRobot])


		Update for Beta 4: exposing JSONValue with public #26 [https://github.com/SwiftyJSON/SwiftyJSON/pull/26] (NachoSoto [https://github.com/NachoSoto])


		SourceKitService Termination issue fix #23 [https://github.com/SwiftyJSON/SwiftyJSON/pull/23] (ipraba [https://github.com/ipraba])


		Add percent escaping to URL string #21 [https://github.com/SwiftyJSON/SwiftyJSON/pull/21] (romanroibu [https://github.com/romanroibu])


		Converting JSON objects to string is fixed #20 [https://github.com/SwiftyJSON/SwiftyJSON/pull/20] (bkase [https://github.com/bkase])


		JSONValue can be inited via string #19 [https://github.com/SwiftyJSON/SwiftyJSON/pull/19] (bkase [https://github.com/bkase])


		Updated to remove errors in Xcode Beta 3 #18 [https://github.com/SwiftyJSON/SwiftyJSON/pull/18] (krishpop [https://github.com/krishpop])


		add first and last in JSONValue, add string to double, int etc. #16 [https://github.com/SwiftyJSON/SwiftyJSON/pull/16] (tangplin [https://github.com/tangplin])


		add a “url” property to JSONValue #15 [https://github.com/SwiftyJSON/SwiftyJSON/pull/15] (kyoh [https://github.com/kyoh])


		Some typo fixes #13 [https://github.com/SwiftyJSON/SwiftyJSON/pull/13] (gregbarbosa [https://github.com/gregbarbosa])


		Separate protocols implementation, refactor prettyString composing #6 [https://github.com/SwiftyJSON/SwiftyJSON/pull/6] (garnett [https://github.com/garnett])


		Add project with both OSX/iOS module targets #3 [https://github.com/SwiftyJSON/SwiftyJSON/pull/3] (garnett [https://github.com/garnett])





* This Change Log was automatically generated by github_changelog_generator [https://github.com/skywinder/Github-Changelog-Generator]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/up-pressed.png





waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/Carthage/Checkouts/ObjectMapper/README.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  
ObjectMapper


[image: CocoaPods] [https://github.com/Hearst-DD/ObjectMapper]
[image: Carthage compatible] [https://github.com/Carthage/Carthage]
[image: Build Status] [https://travis-ci.org/Hearst-DD/ObjectMapper]


ObjectMapper is a framework written in Swift that makes it easy for you to convert your model objects (classes and structs) to and from JSON.



		Features


		The Basics


		Mapping Nested Objects


		Custom Transformations


		Subclassing


		Generic Objects


		Mapping Context


		ObjectMapper + Alamofire


		ObjectMapper + Realm


		To Do


		Contributing


		Installation








Features:



		Mapping JSON to objects


		Mapping objects to JSON


		Nested Objects (stand alone, in arrays or in dictionaries)


		Custom transformations during mapping


		Struct support








The Basics


To support mapping, a class or struct just needs to implement the Mappable protocol which includes the following functions:


init?(_ map: Map)
mutating func mapping(map: Map)






ObjectMapper uses the <- operator to define how each member variable maps to and from JSON.


class User: Mappable {
    var username: String?
    var age: Int?
    var weight: Double!
    var array: [AnyObject]?
    var dictionary: [String : AnyObject] = [:]
    var bestFriend: User?                       // Nested User object
    var friends: [User]?                        // Array of Users
    var birthday: NSDate?

    required init?(_ map: Map) {

    }

    // Mappable
    func mapping(map: Map) {
        username    <- map["username"]
        age         <- map["age"]
        weight      <- map["weight"]
        array       <- map["arr"]
        dictionary  <- map["dict"]
        bestFriend  <- map["best_friend"]
        friends     <- map["friends"]
        birthday    <- (map["birthday"], DateTransform())
    }
}

struct Temperature: Mappable {
    var celsius: Double?
    var fahrenheit: Double?

    init?(_ map: Map) {

    }

    mutating func mapping(map: Map) {
        celsius     <- map["celsius"]
        fahrenheit  <- map["fahrenheit"]
    }
}






Once your class implements Mappable, ObjectMapper allows you to easily convert to and from JSON.


Convert a JSON string to a model object:


let user = User(JSONString: JSONString)






Convert a model object to a JSON string:


let JSONString = user.toJSONString(prettyPrint: true)






Alternatively, the Mapper.swift class can also be used to accomplish the above (it also provides extra functionality for other situations):


// Convert JSON String to Model
let user = Mapper<User>().map(JSONString: JSONString)
// Create JSON String from Model
let JSONString = Mapper().toJSONString(user, prettyPrint: true)






ObjectMapper can map classes composed of the following types:



		Int


		Bool


		Double


		Float


		String


		RawRepresentable (Enums)


		Array<AnyObject>


		Dictionary<String, AnyObject>


		Object<T: Mappable>


		Array<T: Mappable>


		Array<Array<T: Mappable>>


		Set<T: Mappable>


		Dictionary<String, T: Mappable>


		Dictionary<String, Array<T: Mappable>>


		Optionals of all the above


		Implicitly Unwrapped Optionals of the above






Mappable Protocol



mutating func mapping(map: Map)


This function is where all mapping definitions should go. When parsing JSON, this function is executed after successful object creation. When generating JSON, it is the only function that is called on the object.





init?(_ map: Map)


This failable initializer is used by ObjectMapper for object creation. It can be used by developers to validate JSON prior to object serialization. Returning nil within the function will prevent the mapping from occuring. You can inspect the JSON stored within the Map object to do your validation:


required init?(_ map: Map){
    // check if a required "name" property exists within the JSON.
    if map.JSONDictionary["name"] == nil {
        return nil
    }
}











StaticMappable Protocol


StaticMappable is an alternative to Mappable. It provides developers with a static function that is used by ObjectMapper for object initialization instead of init?(_ map: Map).


Note: StaticMappable, like Mappable, is a sub protocol of BaseMappable which is where the mapping(_ map: Map) function is defined.



static func objectForMapping(map: Map) -> BaseMappable?


ObjectMapper uses this function to get objects to use for mapping. Developers should return an instance of an object that conforms to BaseMappable in this function. This function can also be used to:



		validate JSON prior to object serialization


		provide an existing cached object to be used for mapping


		return an object of another type (which also conforms to BaseMappable) to be used for mapping. For instance, you may inspect the JSON to infer the type of object that should be used for mapping (see example [https://github.com/Hearst-DD/ObjectMapper/blob/master/ObjectMapperTests/ClassClusterTests.swift#L62])





If you need to implemented ObjectMapper in an extension, you will need to select this protocol instead of Mappable.









Easy Mapping of Nested Objects


ObjectMapper supports dot notation within keys for easy mapping of nested objects. Given the following JSON String:


"distance" : {
     "text" : "102 ft",
     "value" : 31
}






You can access the nested objects as follows:


func mapping(map: Map) {
    distance <- map["distance.value"]
}






Nested keys also support accessing values from an array. Given a JSON response with an array of distances, the value could be accessed as follows:


distance <- map["distances.0.value"]






If you have a key that contains ., you can individually disable the above feature as follows:


func mapping(map: Map) {
    identifier <- map["app.identifier", nested: false]
}









Custom Transforms


ObjectMapper also supports custom transforms that convert values during the mapping process. To use a transform, simply create a tuple with map["field_name"] and the transform of your choice on the right side of the <- operator:


birthday <- (map["birthday"], DateTransform())






The above transform will convert the JSON Int value to an NSDate when reading JSON and will convert the NSDate to an Int when converting objects to JSON.


You can easily create your own custom transforms by adopting and implementing the methods in the TransformType protocol:


public protocol TransformType {
    typealias Object
    typealias JSON

    func transformFromJSON(value: AnyObject?) -> Object?
    func transformToJSON(value: Object?) -> JSON?
}







TransformOf


In a lot of situations you can use the built-in transform class TransformOf to quickly perform a desired transformation. TransformOf is initialized with two types and two closures. The types define what the transform is converting to and from and the closures perform the actual transformation.


For example, if you want to transform a JSON String value to an Int you could use TransformOf as follows:


let transform = TransformOf<Int, String>(fromJSON: { (value: String?) -> Int? in 
    // transform value from String? to Int?
    return Int(value!)
}, toJSON: { (value: Int?) -> String? in
    // transform value from Int? to String?
    if let value = value {
        return String(value)
    }
    return nil
})

id <- (map["id"], transform)






Here is a more condensed version of the above:


id <- (map["id"], TransformOf<Int, String>(fromJSON: { Int($0!) }, toJSON: { $0.map { String($0) } }))











Subclasses


Classes that implement the Mappable protocol can easily be subclassed. When subclassing mappable classes, follow the structure below:


class Base: Mappable {
    var base: String?
    
    required init?(_ map: Map) {

    }

    func mapping(map: Map) {
        base <- map["base"]
    }
}

class Subclass: Base {
    var sub: String?

    required init?(_ map: Map) {
        super.init(map)
    }

    override func mapping(map: Map) {
        super.mapping(map)
        
        sub <- map["sub"]
    }
}






Make sure your subclass implemenation calls the right initializers and mapping functions to also apply the mappings from your superclass.





Generic Objects


ObjectMapper can handle classes with generic types as long as the generic type also conforms to Mappable. See the following example:


class Result<T: Mappable>: Mappable {
    var result: T?

    required init?(_ map: Map){

    }

    func mapping(map: Map) {
        result <- map["result"]
    }
}

let result = Mapper<Result<User>>().map(JSON)









Mapping Context


The Map object which is passed around during mapping, has an optional MapContext object that is available for developers to use if they need to pass information around during mapping.


To take advantage of this feature, simple create an object that implements MapContext (which is an empty protocol) and pass it into Mapper during initialization.


struct Context: MapContext {
    var importantMappingInfo = "Info that I need during mapping"
}

class User: Mappable {
    var name: String?
    
    required init?(_ map: Map){
    
    }
    
    func mapping(map: Map){
        if let context = map.context as? Context {
            // use context to make decisions about mapping
        }
    }
}

let context = Context()
let user = Mapper<User>(context: context).map(JSONString)






#ObjectMapper + Alamofire


If you are using Alamofire [https://github.com/Alamofire/Alamofire] for networking and you want to convert your responses to Swift objects, you can use AlamofireObjectMapper [https://github.com/tristanhimmelman/AlamofireObjectMapper]. It is a simple Alamofire extension that uses ObjectMapper to automatically map JSON response data to Swift objects.


#ObjectMapper + Realm


ObjectMapper and Realm can be used together. Simply follow the class structure below and you will be able to use ObjectMapper to generate your Realm models:


class Model: Object, Mappable {
    dynamic var name = ""

    required convenience init?(_ map: Map) {
        self.init()
    }

    func mapping(map: Map) {
        name <- map["name"]
    }
}






If you want to serialize associated RealmObjects, you can use ObjectMapper+Realm [https://github.com/jakenberg/ObjectMapper-Realm]. It is a simple Realm extension that serializes arbitrary JSON into Realm’s List class.


Note: Generating a JSON string of a Realm Object using ObjectMappers’ toJSON function only works within a Realm write transaction. This is caused because ObjectMapper uses the inout flag in its mapping functions (<-) which are used both for serializing and deserializing. Realm detects the flag and forces the toJSON function to be called within a write block even though the objects are not being modified.





To Do



		Improve error handling. Perhaps using throws


		Class cluster documentation








Contributing


Contributions are very welcome 👍😃.


Before submitting any pull request, please ensure you have run the included tests and they have passed. If you are including new functionality, please write test cases for it as well.





Installation


ObjectMapper can be added to your project using CocoaPods 0.36 or later [http://blog.cocoapods.org/Pod-Authors-Guide-to-CocoaPods-Frameworks/] by adding the following line to your Podfile:


pod 'ObjectMapper', '~> 1.3'






If you’re using Carthage [https://github.com/Carthage/Carthage] you can add a dependency on ObjectMapper by adding it to your Cartfile:


github "Hearst-DD/ObjectMapper" ~> 1.3






Otherwise, ObjectMapper can be added as a submodule:



		Add ObjectMapper as a submodule [http://git-scm.com/docs/git-submodule] by opening the terminal, cd-ing into your top-level project directory, and entering the command git submodule add https://github.com/Hearst-DD/ObjectMapper.git


		Open the ObjectMapper folder, and drag ObjectMapper.xcodeproj into the file navigator of your app project.


		In Xcode, navigate to the target configuration window by clicking on the blue project icon, and selecting the application target under the “Targets” heading in the sidebar.


		Ensure that the deployment target of ObjectMapper.framework matches that of the application target.


		In the tab bar at the top of that window, open the “Build Phases” panel.


		Expand the “Target Dependencies” group, and add ObjectMapper.framework.


		Click on the + button at the top left of the panel and select “New Copy Files Phase”. Rename this new phase to “Copy Frameworks”, set the “Destination” to “Frameworks”, and add ObjectMapper.framework.









          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/waterwheelDemo/Pods/Alamofire/README.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  [image: Alamofire: Elegant Networking in Swift]


[image: Build Status] [https://travis-ci.org/Alamofire/Alamofire]
[image: CocoaPods Compatible] [https://img.shields.io/cocoapods/v/Alamofire.svg]
[image: Carthage Compatible] [https://github.com/Carthage/Carthage]
[image: Platform] [http://cocoadocs.org/docsets/Alamofire]
[image: Twitter] [http://twitter.com/AlamofireSF]


Alamofire is an HTTP networking library written in Swift.



		Features


		Component Libraries


		Requirements


		Migration Guides


		Communication


		Installation


		Usage
		Intro - Making a Request, Response Handling, Response Validation, Response Caching


		HTTP - HTTP Methods, Parameter Encoding, HTTP Headers, Authentication


		Large Data - Downloading Data to a File, Uploading Data to a Server


		Tools - Statistical Metrics, cURL Command Output








		Advanced Usage
		URL Session - Session Manager, Session Delegate, Request


		Routing - Routing Requests, Adapting and Retrying Requests


		Model Objects - Custom Response Serialization


		Connection - Security, Network Reachability








		Open Radars


		FAQ


		Credits


		Donations


		License






Features



		[x] Chainable Request / Response Methods


		[x] URL / JSON / plist Parameter Encoding


		[x] Upload File / Data / Stream / MultipartFormData


		[x] Download File using Request or Resume Data


		[x] Authentication with URLCredential


		[x] HTTP Response Validation


		[x] Upload and Download Progress Closures with Progress


		[x] cURL Command Output


		[x] Dynamically Adapt and Retry Requests


		[x] TLS Certificate and Public Key Pinning


		[x] Network Reachability


		[x] Comprehensive Unit and Integration Test Coverage


		[x] Complete Documentation [http://cocoadocs.org/docsets/Alamofire]








Component Libraries


In order to keep Alamofire focused specifically on core networking implementations, additional component libraries have been created by the Alamofire Software Foundation [https://github.com/Alamofire/Foundation] to bring additional functionality to the Alamofire ecosystem.



		AlamofireImage [https://github.com/Alamofire/AlamofireImage] - An image library including image response serializers, UIImage and UIImageView extensions, custom image filters, an auto-purging in-memory cache and a priority-based image downloading system.


		AlamofireNetworkActivityIndicator [https://github.com/Alamofire/AlamofireNetworkActivityIndicator] - Controls the visibility of the network activity indicator on iOS using Alamofire. It contains configurable delay timers to help mitigate flicker and can support URLSession instances not managed by Alamofire.








Requirements



		iOS 9.0+ / Mac OS X 10.11+ / tvOS 9.0+ / watchOS 2.0+


		Xcode 8.0+


		Swift 3.0+








Migration Guides



		Alamofire 4.0 Migration Guide [https://github.com/Alamofire/Alamofire/blob/master/Documentation/Alamofire%204.0%20Migration%20Guide.md]


		Alamofire 3.0 Migration Guide [https://github.com/Alamofire/Alamofire/blob/master/Documentation/Alamofire%203.0%20Migration%20Guide.md]


		Alamofire 2.0 Migration Guide [https://github.com/Alamofire/Alamofire/blob/master/Documentation/Alamofire%202.0%20Migration%20Guide.md]








Communication



		If you need help, use Stack Overflow [http://stackoverflow.com/questions/tagged/alamofire]. (Tag ‘alamofire’)


		If you’d like to ask a general question, use Stack Overflow [http://stackoverflow.com/questions/tagged/alamofire].


		If you found a bug, open an issue.


		If you have a feature request, open an issue.


		If you want to contribute, submit a pull request.








Installation



CocoaPods


CocoaPods [http://cocoapods.org] is a dependency manager for Cocoa projects. You can install it with the following command:


$ gem install cocoapods







CocoaPods 1.1.0+ is required to build Alamofire 4.0.0+.



To integrate Alamofire into your Xcode project using CocoaPods, specify it in your Podfile:


source 'https://github.com/CocoaPods/Specs.git'
platform :ios, '10.0'
use_frameworks!

target '<Your Target Name>' do
    pod 'Alamofire', '~> 4.0'
end






Then, run the following command:


$ pod install









Carthage


Carthage [https://github.com/Carthage/Carthage] is a decentralized dependency manager that builds your dependencies and provides you with binary frameworks.


You can install Carthage with Homebrew [http://brew.sh/] using the following command:


$ brew update
$ brew install carthage






To integrate Alamofire into your Xcode project using Carthage, specify it in your Cartfile:


github "Alamofire/Alamofire" ~> 4.0






Run carthage update to build the framework and drag the built Alamofire.framework into your Xcode project.





Manually


If you prefer not to use either of the aforementioned dependency managers, you can integrate Alamofire into your project manually.



Embedded Framework



		Open up Terminal, cd into your top-level project directory, and run the following command “if” your project is not initialized as a git repository:





$ git init







		Add Alamofire as a git submodule [http://git-scm.com/docs/git-submodule] by running the following command:





$ git submodule add https://github.com/Alamofire/Alamofire.git







		Open the new Alamofire folder, and drag the Alamofire.xcodeproj into the Project Navigator of your application’s Xcode project.



It should appear nested underneath your application’s blue project icon. Whether it is above or below all the other Xcode groups does not matter.









		Select the Alamofire.xcodeproj in the Project Navigator and verify the deployment target matches that of your application target.





		Next, select your application project in the Project Navigator (blue project icon) to navigate to the target configuration window and select the application target under the “Targets” heading in the sidebar.





		In the tab bar at the top of that window, open the “General” panel.





		Click on the + button under the “Embedded Binaries” section.





		You will see two different Alamofire.xcodeproj folders each with two different versions of the Alamofire.framework nested inside a Products folder.



It does not matter which Products folder you choose from, but it does matter whether you choose the top or bottom Alamofire.framework.









		Select the top Alamofire.framework for iOS and the bottom one for OS X.



You can verify which one you selected by inspecting the build log for your project. The build target for Alamofire will be listed as either Alamofire iOS, Alamofire macOS, Alamofire tvOS or Alamofire watchOS.









		And that’s it!









The Alamofire.framework is automagically added as a target dependency, linked framework and embedded framework in a copy files build phase which is all you need to build on the simulator and a device.












Usage



Making a Request


import Alamofire

Alamofire.request("https://httpbin.org/get")









Response Handling


Handling the Response of a Request made in Alamofire involves chaining a response handler onto the Request.


Alamofire.request("https://httpbin.org/get").responseJSON { response in
    print(response.request)  // original URL request
    print(response.response) // HTTP URL response
    print(response.data)     // server data
    print(response.result)   // result of response serialization

    if let JSON = response.result.value {
        print("JSON: \(JSON)")
    }
}






In the above example, the responseJSON handler is appended to the Request to be executed once the Request is complete. Rather than blocking execution to wait for a response from the server, a callback [http://en.wikipedia.org/wiki/Callback_%28computer_programming%29] in the form of a closure is specified to handle the response once it’s received. The result of a request is only available inside the scope of a response closure. Any execution contingent on the response or data received from the server must be done within a response closure.



Networking in Alamofire is done asynchronously. Asynchronous programming may be a source of frustration to programmers unfamiliar with the concept, but there are very good reasons [https://developer.apple.com/library/ios/qa/qa1693/_index.html] for doing it this way.



Alamofire contains five different response handlers by default including:


// Response Handler - Unserialized Response
func response(
    queue: DispatchQueue?,
    completionHandler: @escaping (DefaultDownloadResponse) -> Void)
    -> Self

// Response Data Handler - Serialized into Data
func responseData(
    queue: DispatchQueue?,
    completionHandler: @escaping (DataResponse<Data>) -> Void)
    -> Self

// Response String Handler - Serialized into String
func responseString(
    queue: DispatchQueue?,
    encoding: String.Encoding?,
    completionHandler: @escaping (DataResponse<String>) -> Void)
    -> Self

// Response JSON Handler - Serialized into Any
func responseJSON(
    queue: DispatchQueue?,
    completionHandler: @escaping (DataResponse<Any>) -> Void)
    -> Self

// Response PropertyList (plist) Handler - Serialized into Any
func responsePropertyList(
    queue: DispatchQueue?,
    completionHandler: @escaping (DataResponse<Any>) -> Void))
    -> Self






None of the response handlers perform any validation of the HTTPURLResponse it gets back from the server.



For example, response status codes in the 400..<499 and 500..<599 ranges do NOT automatically trigger an Error. Alamofire uses Response Validation method chaining to achieve this.




Response Handler


The response handler does NOT evaluate any of the response data. It merely forwards on all information directly from the URL session delegate. It is the Alamofire equivalent of using cURL to execute a Request.


Alamofire.request("https://httpbin.org/get").response { response in
    print("Request: \(response.request)")
    print("Response: \(response.response)")
    print("Error: \(response.data)")

    if let data = data, let utf8Text = String(data: data, encoding: .utf8) {
        print("Data: \(utf8Text)")
    }
}







We strongly encourage you to leverage the other response serializers taking advantage of Response and Result types.






Response Data Handler


The responseData handler uses the responseDataSerializer (the object that serializes the server data into some other type) to extract the Data returned by the server. If no errors occur and Data is returned, the response Result will be a .success and the value will be of type Data.


Alamofire.request("https://httpbin.org/get").responseData { response in
    debugPrint("All Response Info: \(response)")

    if let data = response.result.value, let utf8Text = String(data: data, encoding: .utf8) {
        print("Data: \(utf8Text)")
    }
}









Response String Handler


The responseString handler uses the responseStringSerializer to convert the Data returned by the server into a String with the specified encoding. If no errors occur and the server data is successfully serialized into a String, the response Result will be a .success and the value will be of type String.


Alamofire.request("https://httpbin.org/get").responseString { response in
    print("Success: \(response.result.isSuccess)")
    print("Response String: \(response.result.value)")
}







If no encoding is specified, Alamofire will use the text encoding specified in the HTTPURLResponse from the server. If the text encoding cannot be determined by the server response, it defaults to .isoLatin1.






Response JSON Handler


The responseJSON handler uses the responseJSONSerializer to convert the Data returned by the server into an Any type using the specified JSONSerialization.ReadingOptions. If no errors occur and the server data is successfully serialized into a JSON object, the response Result will be a .success and the value will be of type Any.


Alamofire.request("https://httpbin.org/get").responseJSON { response in
    debugPrint(response)

    if let json = response.result.value {
        print("JSON: \(json)")
    }
}







All JSON serialization is handled by the JSONSerialization API in the Foundation framework.






Chained Response Handlers


Response handlers can even be chained:


Alamofire.request("https://httpbin.org/get")
    .responseString { response in
        print("Response String: \(response.result.value)")
    }
    .responseJSON { response in
        print("Response JSON: \(response.result.value)")
    }







It is important to note that using multiple response handlers on the same Request requires the server data to be serialized multiple times. Once for each response handler.






Response Handler Queue


Reponse handlers by default are executed on the main dispatch queue. However, a custom dispatch queue can be provided instead.


let utilityQueue = DispatchQueue.global(qos: .utility)

Alamofire.request("https://httpbin.org/get").responseJSON(queue: utilityQueue) { response in
    print("Executing response handler on utility queue")
}











Response Validation


By default, Alamofire treats any completed request to be successful, regardless of the content of the response. Calling validate before a response handler causes an error to be generated if the response had an unacceptable status code or MIME type.



Manual Validation


Alamofire.request("https://httpbin.org/get")
    .validate(statusCode: 200..<300)
    .validate(contentType: ["application/json"])
    .response { response in
        switch response.result {
        case .success:
            print("Validation Successful")
        case .failure(let error):
            print(error)
        }
    }









Automatic Validation


Automatically validates status code within 200...299 range, and that the Content-Type header of the response matches the Accept header of the request, if one is provided.


Alamofire.request("https://httpbin.org/get").validate().responseJSON { response in
    switch response.result {
    case .success:
        print("Validation Successful")
    case .failure(let error):
        print(error)
    }
}











Response Caching


Response Caching is handled on the system framework level by URLCache [https://developer.apple.com/reference/foundation/urlcache]. It provides a composite in-memory and on-disk cache and lets you manipulate the sizes of both the in-memory and on-disk portions.



By default, Alamofire leverages the shared URLCache. In order to customize it, see the Session Manager Configurations section.






HTTP Methods


The HTTPMethod enumeration lists the HTTP methods defined in RFC 7231 §4.3 [http://tools.ietf.org/html/rfc7231#section-4.3]:


public enum HTTPMethod: String {
    case options = "OPTIONS"
    case get     = "GET"
    case head    = "HEAD"
    case post    = "POST"
    case put     = "PUT"
    case patch   = "PATCH"
    case delete  = "DELETE"
    case trace   = "TRACE"
    case connect = "CONNECT"
}






These values can be passed as the method argument to the Alamofire.request API:


Alamofire.request("https://httpbin.org/get") // method defaults to `.get`

Alamofire.request("https://httpbin.org/post", method: .post)
Alamofire.request("https://httpbin.org/put", method: .put)
Alamofire.request("https://httpbin.org/delete", method: .delete)







The Alamofire.request method parameter defaults to .get.






Parameter Encoding


Alamofire supports three types of parameter encoding including: URL, JSON and PropertyList. It can also support any custom encoding that conforms to the ParameterEncoding protocol.



URL Encoding


The URLEncoding type creates a url-encoded query string to be set as or appended to any existing URL query string or set as the HTTP body of the URL request. Whether the query string is set or appended to any existing URL query string or set as the HTTP body depends on the Destination of the encoding. The Destination enumeration has three cases:



		.methodDependent - Applies encoded query string result to existing query string for GET, HEAD and DELETE requests and sets as the HTTP body for requests with any other HTTP method.


		.queryString - Sets or appends encoded query string result to existing query string.


		.httpBody - Sets encoded query string result as the HTTP body of the URL request.





The Content-Type HTTP header field of an encoded request with HTTP body is set to application/x-www-form-urlencoded; charset=utf-8. Since there is no published specification for how to encode collection types, the convention of appending [] to the key for array values (foo[]=1&foo[]=2), and appending the key surrounded by square brackets for nested dictionary values (foo[bar]=baz).



GET Request With URL-Encoded Parameters


let parameters: Parameters = ["foo": "bar"]

// All three of these calls are equivalent
Alamofire.request("https://httpbin.org/get", parameters: parameters) // encoding defaults to `URLEncoding.default`
Alamofire.request("https://httpbin.org/get", parameters: parameters, encoding: URLEncoding.default)
Alamofire.request("https://httpbin.org/get", parameters: parameters, encoding: URLEncoding(destination: .methodDependent))

// https://httpbin.org/get?foo=bar









POST Request With URL-Encoded Parameters


let parameters: Parameters = [
    "foo": "bar",
    "baz": ["a", 1],
    "qux": [
        "x": 1,
        "y": 2,
        "z": 3
    ]
]

// All three of these calls are equivalent
Alamofire.request("https://httpbin.org/post", parameters: parameters)
Alamofire.request("https://httpbin.org/post", parameters: parameters, encoding: URLEncoding.default)
Alamofire.request("https://httpbin.org/post", parameters: parameters, encoding: URLEncoding.httpBody)

// HTTP body: foo=bar&baz[]=a&baz[]=1&qux[x]=1&qux[y]=2&qux[z]=3











JSON Encoding


The JSONEncoding type creates a JSON representation of the parameters object, which is set as the HTTP body of the request. The Content-Type HTTP header field of an encoded request is set to application/json.



POST Request with JSON-Encoded Parameters


let parameters: Parameters = [
    "foo": [1,2,3],
    "bar": [
        "baz": "qux"
    ]
]

// Both calls are equivalent
Alamofire.request("https://httpbin.org/post", method: .post, parameters: parameters, encoding: JSONEncoding.default)
Alamofire.request("https://httpbin.org/post", method: .post, parameters: parameters, encoding: JSONEncoding(options: []))

// HTTP body: {"foo": [1, 2, 3], "bar": {"baz": "qux"}}











Property List Encoding


The PropertyListEncoding uses PropertyListSerialization to create a plist representation of the parameters object, according to the associated format and write options values, which is set as the body of the request. The Content-Type HTTP header field of an encoded request is set to application/x-plist.





Custom Encoding


In the event that the provided ParameterEncoding types do not meet your needs, you can create your own custom encoding. Here’s a quick example of how you could build a custom JSONStringArrayEncoding type to encode a JSON string array onto a Request.


struct JSONStringArrayEncoding: ParameterEncoding {
    private let array: [String]

    init(array: [String]) {
        self.array = array
    }

    func encode(_ urlRequest: URLRequestConvertible, with parameters: Parameters?) throws -> URLRequest {
        var urlRequest = urlRequest.urlRequest

        let data = try JSONSerialization.data(withJSONObject: array, options: [])

        if urlRequest.value(forHTTPHeaderField: "Content-Type") == nil {
            urlRequest.setValue("application/json", forHTTPHeaderField: "Content-Type")
        }

        urlRequest.httpBody = data

        return urlRequest
    }
}









Manual Parameter Encoding of a URLRequest


The ParameterEncoding APIs can be used outside of making network requests.


let url = URL(string: "https://httpbin.org/get")!
var urlRequest = URLRequest(url: url)

let parameters: Parameters = ["foo": "bar"]
let encodedURLRequest = try URLEncoding.queryString.encode(urlRequest, with: parameters)











HTTP Headers


Adding a custom HTTP header to a Request is supported directly in the global request method. This makes it easy to attach HTTP headers to a Request that can be constantly changing.


let headers: HTTPHeaders = [
    "Authorization": "Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==",
    "Accept": "application/json"
]

Alamofire.request("https://httpbin.org/headers", headers: headers).responseJSON { response in
    debugPrint(response)
}







For HTTP headers that do not change, it is recommended to set them on the URLSessionConfiguration so they are automatically applied to any URLSessionTask created by the underlying URLSession. For more information, see the Session Manager Configurations section.



The default Alamofire SessionManager provides a default set of headers for every Request. These include:



		Accept-Encoding, which defaults to gzip;q=1.0, compress;q=0.5, per RFC 7230 §4.2.3 [https://tools.ietf.org/html/rfc7230#section-4.2.3].


		Accept-Language, which defaults to up to the top 6 preferred languages on the system, formatted like en;q=1.0, per RFC 7231 §5.3.5 [https://tools.ietf.org/html/rfc7231#section-5.3.5].


		User-Agent, which contains versioning information about the current app. For example: iOS Example/1.0 (com.alamofire.iOS-Example; build:1; iOS 10.0.0) Alamofire/4.0.0, per RFC 7231 §5.5.3 [https://tools.ietf.org/html/rfc7231#section-5.5.3].





If you need to customize these headers, a custom URLSessionManagerConfiguration should be created, the defaultHTTPHeaders property updated and the configuration applied to a new SessionManager instance.





Authentication


Authentication is handled on the system framework level by URLCredential [https://developer.apple.com/reference/foundation/nsurlcredential] and URLAuthenticationChallenge [https://developer.apple.com/reference/foundation/urlauthenticationchallenge].


Supported Authentication Schemes



		HTTP Basic [http://en.wikipedia.org/wiki/Basic_access_authentication]


		HTTP Digest [http://en.wikipedia.org/wiki/Digest_access_authentication]


		Kerberos [http://en.wikipedia.org/wiki/Kerberos_%28protocol%29]


		NTLM [http://en.wikipedia.org/wiki/NT_LAN_Manager]






HTTP Basic Authentication


The authenticate method on a Request will automatically provide a URLCredential to a URLAuthenticationChallenge when appropriate:


let user = "user"
let password = "password"

Alamofire.request("https://httpbin.org/basic-auth/\(user)/\(password)")
    .authenticate(user: user, password: password)
    .responseJSON { response in
        debugPrint(response)
    }






Depending upon your server implementation, an Authorization header may also be appropriate:


let user = "user"
let password = "password"

var headers: HTTPHeaders = [:]

if let authorizationHeader = Request.authorizationHeader(user: user, password: password) {
    headers[authorizationHeader.key] = authorizationHeader.value
}

Alamofire.request("https://httpbin.org/basic-auth/user/password", headers: headers)
    .responseJSON { response in
        debugPrint(response)
    }









Authentication with URLCredential


let user = "user"
let password = "password"

let credential = URLCredential(user: user, password: password, persistence: .forSession)

Alamofire.request("https://httpbin.org/basic-auth/\(user)/\(password)")
    .authenticate(usingCredential: credential)
    .responseJSON { response in
        debugPrint(response)
    }







It is important to note that when using a URLCredential for authentication, the underlying URLSession will actually end up making two requests if a challenge is issued by the server. The first request will not include the credential which “may” trigger a challenge from the server. The challenge is then received by Alamofire, the credential is appended and the request is retried by the underlying URLSession.








Downloading Data to a File


Requests made in Alamofire that fetch data from a server can download the data in-memory or on-disk. The Alamofire.request APIs used in all the examples so far always downloads the server data in-memory. This is great for smaller payloads because it’s more efficient, but really bad for larger payloads because the download could run your entire application out-of-memory. Because of this, you can also use the Alamofire.download APIs to download the server data to a temporary file on-disk.


Alamofire.download("https://httpbin.org/image/png").responseData { response in
    if let data = response.result.value {
        let image = UIImage(data: data)
    }
}







The Alamofire.download APIs should also be used if you need to download data while your app is in the background. For more information, please see the Session Manager Configurations section.




Download File Destination


You can also provide a DownloadFileDestination closure to move the file from the temporary directory to a final destination. Before the temporary file is actually moved to the destinationURL, the DownloadOptions specified in the closure will be executed. The two currently supported DownloadOptions are:



		.createIntermediateDirectories - Creates intermediate directories for the destination URL if specified.


		.removePreviousFile - Removes a previous file from the destination URL if specified.





let destination: DownloadRequest.DownloadFileDestination = { _, _ in
    let documentsURL = FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)[0]
    let fileURL = documentsURL.appendPathComponent("pig.png")

    return (fileURL, [.removePreviousFile, .createIntermediateDirectories])
}

Alamofire.download(urlString, to: destination).response { response in
    print(response)

    if response.result.isSuccess, let imagePath = response.destinationURL?.path {
        let image = UIImage(contentsOfFile: imagePath)
    }
}






You can also use the suggested download destination API.


let destination = DownloadRequest.suggestedDownloadDestination(directory: .documentDirectory)
Alamofire.download("https://httpbin.org/image/png", to: destination)









Download Progress


Many times it can be helpful to report download progress to the user. Any DownloadRequest can report download progress using the downloadProgress API.


Alamofire.download("https://httpbin.org/image/png")
    .downloadProgress { progress in
        print("Download Progress: \(progress.fractionCompleted)")
    }
    .responseData { response in
        if let data = response.result.value {
            let image = UIImage(data: data)
        }
    }






The downloadProgress API also takes a queue parameter which defines which DispatchQueue the download progress closure should be called on.


let utilityQueue = DispatchQueue.global(qos: .utility)

Alamofire.download("https://httpbin.org/image/png")
    .downloadProgress(queue: utilityQueue) { progress in
        print("Download Progress: \(progress.fractionCompleted)")
    }
    .responseData { response in
        if let data = response.result.value {
            let image = UIImage(data: data)
        }
    }









Resuming a Download


If a DownloadRequest is cancelled or interrupted, the underlying URL session may generate resume data for the active DownloadRequest. If this happens, the resume data can be re-used to restart the DownloadRequest where it left off. The resume data can be accessed through the download response, then reused when trying to restart the request.


class ImageRequestor {
    private var resumeData: Data?
    private var image: UIImage?

    func fetchImage(completion: (UIImage?) -> Void) {
        guard image == nil else { completion(image) ; return }

        let destination: DownloadRequest.DownloadFileDestination = { _, _ in
            let documentsURL = FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)[0]
            let fileURL = documentsURL.appendPathComponent("pig.png")

            return (fileURL, [.removePreviousFile, .createIntermediateDirectories])
        }

        let request: DownloadRequest

        if let resumeData = resumeData {
            request = Alamofire.download(resumingWith: resumeData)
        } else {
            request = Alamofire.download("https://httpbin.org/image/png")
        }

        request.responseData { response in
            switch response.result {
            case .success(let data):
                self.image = UIImage(data: data)
            case .failure:
                self.resumeData = response.resumeData
            }
        }
    }
}











Uploading Data to a Server


When sending relatively small amounts of data to a server using JSON or URL encoded parameters, the Alamofire.request APIs are usually sufficient. If you need to send much larger amounts of data from a file URL or an InputStream, then the Alamofire.upload APIs are what you want to use.



The Alamofire.upload APIs should also be used if you need to upload data while your app is in the background. For more information, please see the Session Manager Configurations section.




Uploading Data


let imageData = UIPNGRepresentation(image)!

Alamofire.upload(imageData, to: "https://httpbin.org/post").responseJSON { response in
    debugPrint(response)
}









Uploading a File


let fileURL = Bundle.main.url(forResource: "video", withExtension: "mov")

Alamofire.upload(fileURL, to: "https://httpbin.org/post").responseJSON { response in
    debugPrint(response)
}









Uploading Multipart Form Data


Alamofire.upload(
    multipartFormData: { multipartFormData in
        multipartFormData.append(unicornImageURL, withName: "unicorn")
        multipartFormData.append(rainbowImageURL, withName: "rainbow")
    },
    to: "https://httpbin.org/post",
    encodingCompletion: { encodingResult in
        switch encodingResult {
        case .success(let upload, _, _):
            upload.responseJSON { response in
                debugPrint(response)
            }
        case .failure(let encodingError):
            print(encodingError)
        }
    }
)









Upload Progress


While your user is waiting for their upload to complete, sometimes it can be handy to show the progress of the upload to the user. Any UploadRequest can report both upload progress and download progress of the response data using the uploadProgress and downloadProgress APIs.


let fileURL = Bundle.main.url(forResource: "video", withExtension: "mov")

Alamofire.upload(fileURL, to: "https://httpbin.org/post")
    .uploadProgress { progress in // main queue by default
        print("Upload Progress: \(progress.fractionCompleted)")
    }
    .downloadProgress { progress in // main queue by default
        print("Download Progress: \(progress.fractionCompleted)")
    }
    .responseJSON { response in
        debugPrint(response)
    }











Statistical Metrics



Timeline


Alamofire collects timings throughout the lifecycle of a Request and creates a Timeline object exposed as a property on all response types.


Alamofire.request("https://httpbin.org/get").responseJSON { response in
    print(response.timeline)
}






The above reports the following Timeline info:



		Latency: 0.428 seconds


		Request Duration: 0.428 seconds


		Serialization Duration: 0.001 seconds


		Total Duration: 0.429 seconds








URL Session Task Metrics


In iOS and tvOS 10 and macOS 10.12, Apple introduced the new URLSessionTaskMetrics [https://developer.apple.com/reference/foundation/urlsessiontaskmetrics] APIs. The task metrics encapsulate some fantastic statistical information about the request and response execution. The API is very similar to the Timeline, but provides many more statistics that Alamofire doesn’t have access to compute. The metrics can be accessed through any response type.


Alamofire.request("https://httpbin.org/get").responseJSON { response in
    print(response.metrics)
}






It’s important to note that these APIs are only available on iOS and tvOS 10 and macOS 10.12. Therefore, depending on your deployment target, you may need to use these inside availability checks:


Alamofire.request("https://httpbin.org/get").responseJSON { response in
    if #available(iOS 10.0. *) {
        print(response.metrics)
    }
}











cURL Command Output


Debugging platform issues can be frustrating. Thankfully, Alamofire Request objects conform to both the CustomStringConvertible and CustomDebugStringConvertible protocols to provide some VERY helpful debugging tools.



CustomStringConvertible


let request = Alamofire.request("https://httpbin.org/ip")

print(request)
// GET https://httpbin.org/ip (200)









CustomDebugStringConvertible


let request = Alamofire.request("https://httpbin.org/get", parameters: ["foo": "bar"])
debugPrint(request)






Outputs:


$ curl -i \
    -H "User-Agent: Alamofire/4.0.0" \
    -H "Accept-Encoding: gzip;q=1.0, compress;q=0.5" \
    -H "Accept-Language: en;q=1.0,fr;q=0.9,de;q=0.8,zh-Hans;q=0.7,zh-Hant;q=0.6,ja;q=0.5" \
    "https://httpbin.org/get?foo=bar"















Advanced Usage


Alamofire is built on URLSession and the Foundation URL Loading System. To make the most of this framework, it is recommended that you be familiar with the concepts and capabilities of the underlying networking stack.


Recommended Reading



		URL Loading System Programming Guide [https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.html]


		URLSession Class Reference [https://developer.apple.com/reference/foundation/nsurlsession]


		URLCache Class Reference [https://developer.apple.com/reference/foundation/urlcache]


		URLAuthenticationChallenge Class Reference [https://developer.apple.com/reference/foundation/urlauthenticationchallenge]






Session Manager


Top-level convenience methods like Alamofire.request use a default instance of Alamofire.SessionManager, which is configured with the default URLSessionConfiguration.


As such, the following two statements are equivalent:


Alamofire.request("https://httpbin.org/get")






let sessionManager = Alamofire.SessionManager.default
sessionManager.request("https://httpbin.org/get")






Applications can create session managers for background and ephemeral sessions, as well as new managers that customize the default session configuration, such as for default headers (httpAdditionalHeaders) or timeout interval (timeoutIntervalForRequest).



Creating a Session Manager with Default Configuration


let configuration = URLSessionConfiguration.default
let sessionManager = Alamofire.SessionManager(configuration: configuration)









Creating a Session Manager with Background Configuration


let configuration = URLSessionConfiguration.background(withIdentifier: "com.example.app.background")
let sessionManager = Alamofire.SessionManager(configuration: configuration)









Creating a Session Manager with Ephemeral Configuration


let configuration = URLSessionConfiguration.ephemeral
let sessionManager = Alamofire.SessionManager(configuration: configuration)









Modifying the Session Configuration


var defaultHeaders = Alamofire.SessionManager.default.defaultHTTPHeaders
defaultHeaders["DNT"] = "1 (Do Not Track Enabled)"

let configuration = URLSessionConfiguration.default
configuration.httpAdditionalHeaders = defaultHeaders

let sessionManager = Alamofire.SessionManager(configuration: configuration)







This is not recommended for Authorization or Content-Type headers. Instead, use the headers parameter in the top-level Alamofire.request APIs, URLRequestConvertible and ParameterEncoding, respectively.








Session Delegate


By default, an Alamofire SessionManager instance creates a SessionDelegate object to handle all the various types of delegate callbacks that are generated by the underlying URLSession. The implementations of each delegate method handle the most common use cases for these types of calls abstracting the complexity away from the top-level APIs. However, advanced users may find the need to override the default functionality for various reasons.



Override Closures


The first way to customize the SessionDelegate behavior is through the use of the override closures. Each closure gives you the ability to override the implementation of the matching SessionDelegate API, yet still use the default implementation for all other APIs. This makes it easy to customize subsets of the delegate functionality. Here are a few examples of some of the override closures available:


/// Overrides default behavior for URLSessionDelegate method `urlSession(_:didReceive:completionHandler:)`.
open var sessionDidReceiveChallenge: ((URLSession, URLAuthenticationChallenge) -> (URLSession.AuthChallengeDisposition, URLCredential?))?

/// Overrides default behavior for URLSessionDelegate method `urlSessionDidFinishEvents(forBackgroundURLSession:)`.
open var sessionDidFinishEventsForBackgroundURLSession: ((URLSession) -> Void)?

/// Overrides default behavior for URLSessionTaskDelegate method `urlSession(_:task:willPerformHTTPRedirection:newRequest:completionHandler:)`.
open var taskWillPerformHTTPRedirection: ((URLSession, URLSessionTask, HTTPURLResponse, URLRequest) -> URLRequest?)?

/// Overrides default behavior for URLSessionDataDelegate method `urlSession(_:dataTask:willCacheResponse:completionHandler:)`.
open var dataTaskWillCacheResponse: ((URLSession, URLSessionDataTask, CachedURLResponse) -> CachedURLResponse?)?






The following is a short example of how to use the taskWillPerformHTTPRedirection to avoid following redirects to any apple.com domains.


let sessionManager = Alamofire.SessionManager(configuration: URLSessionConfiguration.default)
let delegate: Alamofire.SessionDelegate = sessionManager.delegate

delegate.taskWillPerformHTTPRedirection = { session, task, response, request in
    var finalRequest = request

    if
        let originalRequest = task.originalRequest,
        let urlString = originalRequest.url?.urlString,
        urlString.contains("apple.com")
    {
        finalRequest = originalRequest
    }

    return finalRequest
}









Subclassing


Another way to override the default implementation of the SessionDelegate is to subclass it. Subclassing allows you completely customize the behavior of the API or to create a proxy for the API and still use the default implementation. Creating a proxy allows you to log events, emit notifications, provide pre and post hook implementations, etc. Here’s a quick example of subclassing the SessionDelegate and logging a message when a redirect occurs.


class LoggingSessionDelegate: SessionDelegate {
    override func urlSession(
        _ session: URLSession,
        task: URLSessionTask,
        willPerformHTTPRedirection response: HTTPURLResponse,
        newRequest request: URLRequest,
        completionHandler: @escaping (URLRequest?) -> Void)
    {
        print("URLSession will perform HTTP redirection to request: \(request)")

        super.urlSession(
            session,
            task: task,
            willPerformHTTPRedirection: response,
            newRequest: request,
            completionHandler: completionHandler
        )
    }
}






Generally speaking, either the default implementation or the override closures should provide the necessary functionality required. Subclassing should only be used as a last resort.



It is important to keep in mind that the subdelegates are initialized and destroyed in the default implementation. Be careful when subclassing to not introduce memory leaks.








Request


The result of a request, download, upload or stream methods are a DataRequest, DownloadRequest, UploadRequest and StreamRequest which all inherit from Request. All Request instances are always created by an owning session manager, and never initialized directly.


Each subclass has specialized methods such as authenticate, validate, responseJSON and uploadProgress that each return the caller instance in order to facilitate method chaining.


Requests can be suspended, resumed and cancelled:



		suspend(): Suspends the underlying task and dispatch queue.


		resume(): Resumes the underlying task and dispatch queue. If the owning manager does not have startRequestsImmediately set to true, the request must call resume() in order to start.


		cancel(): Cancels the underlying task, producing an error that is passed to any registered response handlers.








Routing Requests


As apps grow in size, it’s important to adopt common patterns as you build out your network stack. An important part of that design is how to route your requests. The Alamofire URLConvertible and URLRequestConvertible protocols along with the Router design pattern are here to help.



URLConvertible


Types adopting the URLConvertible protocol can be used to construct URLs, which are then used to construct URL requests internally. String, URL, and URLComponents conform to URLConvertible by default, allowing any of them to be passed as url parameters to the request, upload, and download methods:


let urlString = "https://httpbin.org/post"
Alamofire.request(urlString, method: .post)

let url = URL(string: urlString)!
Alamofire.request(url, method: .post)

let urlComponents = URLComponents(url: url, resolvingAgainstBaseURL: true)
Alamofire.request(.post, URLComponents)






Applications interacting with web applications in a significant manner are encouraged to have custom types conform to URLConvertible as a convenient way to map domain-specific models to server resources.



Type-Safe Routing


extension User: URLConvertible {
    static let baseURLString = "https://example.com"

    func asURL() throws -> URL {
        let urlString = User.baseURLString + "/users/\(username)/"
        return try urlString.asURL()
    }
}






let user = User(username: "mattt")
Alamofire.request(user) // https://example.com/users/mattt











URLRequestConvertible


Types adopting the URLRequestConvertible protocol can be used to construct URL requests. URLRequest conforms to URLRequestConvertible by default, allowing it to be passed into request, upload, and download methods directly (this is the recommended way to specify custom HTTP body for individual requests):


let url = URL(string: "https://httpbin.org/post")!
var urlRequest = URLRequest(url: url)
urlRequest.httpMethod = "POST"

let parameters = ["foo": "bar"]

do {
    urlRequest.httpBody = try JSONSerialization.data(withJSONObject: parameters, options: [])
} catch {
    // No-op
}

urlRequest.setValue("application/json", forHTTPHeaderField: "Content-Type")

Alamofire.request(urlRequest)






Applications interacting with web applications in a significant manner are encouraged to have custom types conform to URLRequestConvertible as a way to ensure consistency of requested endpoints. Such an approach can be used to abstract away server-side inconsistencies and provide type-safe routing, as well as manage authentication credentials and other state.



API Parameter Abstraction


enum Router: URLRequestConvertible {
    case search(query: String, page: Int)

    static let baseURLString = "https://example.com"
    static let perPage = 50

    // MARK: URLRequestConvertible

    func asURLRequest() throws -> URLRequest {
        let result: (path: String, parameters: Parameters) = {
            switch self {
            case let .search(query, page) where page > 0:
                return ("/search", ["q": query, "offset": Router.perPage * page])
            case let .search(query, _):
                return ("/search", ["q": query])
            }
        }()

        let url = try Router.baseURLString.asURL()
        let urlRequest = URLRequest(url: url.appendingPathComponent(result.path))

        return try URLEncoding.default.encode(urlRequest, with: result.parameters)
    }
}






Alamofire.request(Router.search(query: "foo bar", page: 1)) // ?q=foo%20bar&offset=50









CRUD & Authorization


import Alamofire

enum Router: URLRequestConvertible {
    case createUser(parameters: Parameters)
    case readUser(username: String)
    case updateUser(username: String, parameters: Parameters)
    case destroyUser(username: String)

    static let baseURLString = "https://example.com"

    var method: HTTPMethod {
        switch self {
        case .createUser:
            return .post
        case .readUser:
            return .get
        case .updateUser:
            return .put
        case .destroyUser:
            return .delete
        }
    }

    var path: String {
        switch self {
        case .createUser:
            return "/users"
        case .readUser(let username):
            return "/users/\(username)"
        case .updateUser(let username, _):
            return "/users/\(username)"
        case .destroyUser(let username):
            return "/users/\(username)"
        }
    }

    // MARK: URLRequestConvertible

    func asURLRequest() throws -> URLRequest {
        let url = try Router.baseURLString.asURL()

        var urlRequest = URLRequest(url: url.appendingPathComponent(path))
        urlRequest.httpMethod = method.rawValue

        switch self {
        case .createUser(let parameters):
            urlRequest = try URLEncoding.default.encode(urlRequest, with: parameters)
        case .updateUser(_, let parameters):
            urlRequest = try URLEncoding.default.encode(urlRequest, with: parameters)
        default:
            break
        }

        return urlRequest
    }
}






Alamofire.request(Router.readUser("mattt")) // GET /users/mattt













Adapting and Retrying Requests


Most web services these days are behind some sort of authentication system. One of the more common ones today is OAuth. This generally involves generating an access token authorizing your application or user to call the various supported web services. While creating these initial access tokens can be laborsome, it can be even more complicated when your access token expires and you need to fetch a new one. There are many thread-safety issues that need to be considered.


The RequestAdapter and RequestRetrier protocols were created to make it much easier to create a thread-safe authentication system for a specific set of web services.



RequestAdapter


The RequestAdapter protocol allows each Request made on a SessionManager to be inspected and adapted before being created. One very specific way to use an adapter is to append an Authorization header to requests behind a certain type of authentication.


class AccessTokenAdapter: RequestAdapter {
    private let accessToken: String

    init(accessToken: String) {
        self.accessToken = accessToken
    }

    func adapt(_ urlRequest: URLRequest) throws -> URLRequest {
        var urlRequest = urlRequest

        if urlRequest.urlString.hasPrefix("https://httpbin.org") {
            urlRequest.setValue("Bearer " + accessToken, forHTTPHeaderField: "Authorization")
        }

        return urlRequest
    }
}






let sessionManager = SessionManager()
sessionManager.adapter = AccessTokenAdapter(accessToken: "1234")

sessionManager.request("https://httpbin.org/get")









RequestRetrier


The RequestRetrier protocol allows a Request that encountered an Error while being executed to be retried. When using both the RequestAdapter and RequestRetrier protocols together, you can create credential refresh systems for OAuth1, OAuth2, Basic Auth and even exponential backoff retry policies. The possibilities are endless. Here’s an example of how you could implement a refresh flow for OAuth2 access tokens.



DISCLAIMER: This is NOT a global OAuth2 solution. It is merely an example demonstrating how one could use the RequestAdapter in conjunction with the RequestRetrier to create a thread-safe refresh system.




To reiterate, do NOT copy this sample code and drop it into a production application. This is merely an example. Each authentication system must be tailored to a particular platform and authentication type.



class OAuth2Handler: RequestAdapter, RequestRetrier {
    private typealias RefreshCompletion = (_ succeeded: Bool, _ accessToken: String?, _ refreshToken: String?) -> Void

    private let sessionManager: SessionManager = {
        let configuration = URLSessionConfiguration.default
        configuration.httpAdditionalHeaders = SessionManager.defaultHTTPHeaders

        return SessionManager(configuration: configuration)
    }()

    private let lock = NSLock()

    private var clientID: String
    private var baseURLString: String
    private var accessToken: String
    private var refreshToken: String

    private var isRefreshing = false
    private var requestsToRetry: [RequestRetryCompletion] = []

    // MARK: - Initialization

    public init(clientID: String, baseURLString: String, accessToken: String, refreshToken: String) {
        self.clientID = clientID
        self.baseURLString = baseURLString
        self.accessToken = accessToken
        self.refreshToken = refreshToken
    }

    // MARK: - RequestAdapter

    func adapt(_ urlRequest: URLRequest) throws -> URLRequest {
        if let url = urlRequest.url, url.urlString.hasPrefix(baseURLString) {
            var urlRequest = urlRequest
            urlRequest.setValue("Bearer " + accessToken, forHTTPHeaderField: "Authorization")
            return urlRequest
        }

        return urlRequest
    }

    // MARK: - RequestRetrier

    func should(_ manager: SessionManager, retry request: Request, with error: Error, completion: @escaping RequestRetryCompletion) {
        lock.lock() ; defer { lock.unlock() }

        if let response = request.task.response as? HTTPURLResponse, response.statusCode == 401 {
            requestsToRetry.append(completion)

            if !isRefreshing {
                refreshTokens { [weak self] succeeded, accessToken, refreshToken in
                    guard let strongSelf = self else { return }

                    strongSelf.lock.lock() ; defer { strongSelf.lock.unlock() }

                    if let accessToken = accessToken, let refreshToken = refreshToken {
                        strongSelf.accessToken = accessToken
                        strongSelf.refreshToken = refreshToken
                    }

                    strongSelf.requestsToRetry.forEach { $0(succeeded, 0.0) }
                    strongSelf.requestsToRetry.removeAll()
                }
            }
        } else {
            completion(false, 0.0)
        }
    }

    // MARK: - Private - Refresh Tokens

    private func refreshTokens(completion: @escaping RefreshCompletion) {
        guard !isRefreshing else { return }

        isRefreshing = true

        let urlString = "\(baseURLString)/oauth2/token"

        let parameters: [String: Any] = [
            "access_token": accessToken,
            "refresh_token": refreshToken,
            "client_id": clientID,
            "grant_type": "refresh_token"
        ]

        sessionManager.request(urlString, method: .post, parameters: parameters, encoding: JSONEncoding.default)
            .responseJSON { [weak self] response in
                guard let strongSelf = self else { return }

                if let json = response.result.value as? [String: String] {
                    completion(true, json["access_token"], json["refresh_token"])
                } else {
                    completion(false, nil, nil)
                }

                strongSelf.isRefreshing = false
            }
    }
}






let baseURLString = "https://some.domain-behind-oauth2.com"

let oauthHandler = OAuth2Handler(
    clientID: "12345678",
    baseURLString: baseURLString,
    accessToken: "abcd1234",
    refreshToken: "ef56789a"
)

let sessionManager = SessionManager()
sessionManager.adapter = oauthHandler
sessionManager.retrier = oauthHandler

let urlString = "\(baseURLString)/some/endpoint"

sessionManager.request(urlString).validate().responseJSON { response in
    debugPrint(response)
}






Once the OAuth2Handler is applied as both the adapter and retrier for the SessionManager, it will handle an invalid access token error by automatically refreshing the access token and retrying all failed requests in the same order they failed.



If you needed them to execute in the same order they were created, you could sort them by their task identifiers.



The example above only checks for a 401 response code which is not nearly robust enough, but does demonstrate how one could check for an invalid access token error. In a production application, one would want to check the realm and most likely the www-authenticate header response although it depends on the OAuth2 implementation.


Another important note is that this authentication system could be shared between multiple session managers. For example, you may need to use both a default and ephemeral session configuration for the same set of web services. The example above allows the same oauthHandler instance to be shared across multiple session managers to manage the single refresh flow.







Custom Response Serialization



Handling Errors


Before implementing custom response serializers or object serialization methods, it’s important to consider how to handle any errors that may occur. There are two basic options: passing existing errors along unmodified, to be dealt with at response time; or, wrapping all errors in an Error type specific to your app.


For example, here’s a simple BackendError enum which will be used in later examples:


enum BackendError: Error {
    case network(error: Error) // Capture any underlying Error from the URLSession API
    case dataSerialization(error: Error)
    case jsonSerialization(error: Error)
    case xmlSerialization(error: Error)
    case objectSerialization(reason: String)
}









Creating a Custom Response Serializer


Alamofire provides built-in response serialization for strings, JSON, and property lists, but others can be added in extensions on Alamofire.DataRequest and / or Alamofire.DownloadRequest.


For example, here’s how a response handler using Ono [https://github.com/mattt/Ono] might be implemented:


extension DataRequest {
    static func xmlResponseSerializer() -> DataResponseSerializer<ONOXMLDocument> {
        return DataResponseSerializer { request, response, data, error in
            // Pass through any underlying URLSession error to the .network case.
            guard error == nil else { return .failure(BackendError.network(error: error!)) }

            // Use Alamofire's existing data serializer to extract the data, passing the error as nil, as it has
            // alreaady been handled.
            let result = Request.serializeResponseData(response: response, data: data, error: nil)
            
            guard case let .success(validData) = result else {
                return .failure(BackendError.dataSerialization(error: result.error! as! AFError))
            }

            do {
                let xml = try ONOXMLDocument(data: validData)
                return .success(xml)
            } catch {
                return .failure(BackendError.xmlSerialization(error: error))
            }
        }
    }

    @discardableResult
    func responseXMLDocument(
        queue: DispatchQueue? = nil,
        completionHandler: @escaping (DataResponse<ONOXMLDocument>) -> Void)
        -> Self
    {
        return response(
            queue: queue,
            responseSerializer: DataRequest.xmlResponseSerializer(),
            completionHandler: completionHandler
        )
    }
}









Generic Response Object Serialization


Generics can be used to provide automatic, type-safe response object serialization.


protocol ResponseObjectSerializable {
    init?(response: HTTPURLResponse, representation: Any)
}

extension DataRequest {
    func responseObject<T: ResponseObjectSerializable>(
        queue: DispatchQueue? = nil,
        completionHandler: @escaping (DataResponse<T>) -> Void)
        -> Self
    {
        let responseSerializer = DataResponseSerializer<T> { request, response, data, error in
            guard error == nil else { return .failure(BackendError.network(error: error!)) }

            let jsonResponseSerializer = DataRequest.jsonResponseSerializer(options: .allowFragments)
            let result = jsonResponseSerializer.serializeResponse(request, response, data, nil)
            
            guard case let .success(jsonObject) = result else {
                return .failure(BackendError.jsonSerialization(error: result.error!))
            }

            guard let response = response, let responseObject = T(response: response, representation: jsonObject) else {
                return .failure(BackendError.objectSerialization(reason: "JSON could not be serialized: \(jsonObject)"))
            }

            return .success(responseObject)
        }

        return response(queue: queue, responseSerializer: responseSerializer, completionHandler: completionHandler)
    }
}






struct User: ResponseObjectSerializable, CustomStringConvertible {
    let username: String
    let name: String

    var description: String {
        return "User: { username: \(username), name: \(name) }"
    }

    init?(response: HTTPURLResponse, representation: Any) {
        guard
            let username = response.url?.lastPathComponent,
            let representation = representation as? [String: Any],
            let name = representation["name"] as? String
        else { return nil }

        self.username = username
        self.name = name
    }
}






Alamofire.request("https://example.com/users/mattt").responseObject { (response: DataResponse<User>) in
    debugPrint(response)

    if let user = response.result.value {
        print("User: { username: \(user.username), name: \(user.name) }")
    }
}






The same approach can also be used to handle endpoints that return a representation of a collection of objects:


protocol ResponseCollectionSerializable {
    static func collection(from response: HTTPURLResponse, withRepresentation representation: Any) -> [Self]
}

extension ResponseCollectionSerializable where Self: ResponseObjectSerializable {
    static func collection(from response: HTTPURLResponse, withRepresentation representation: Any) -> [Self] {
        var collection: [Self] = []

        if let representation = representation as? [[String: Any]] {
            for itemRepresentation in representation {
                if let item = Self(response: response, representation: itemRepresentation) {
                    collection.append(item)
                }
            }
        }

        return collection
    }
}






extension DataRequest {
    @discardableResult
    func responseCollection<T: ResponseCollectionSerializable>(
        queue: DispatchQueue? = nil,
        completionHandler: @escaping (DataResponse<[T]>) -> Void) -> Self
    {
        let responseSerializer = DataResponseSerializer<[T]> { request, response, data, error in
            guard error == nil else { return .failure(BackendError.network(error: error!)) }

            let jsonSerializer = DataRequest.jsonResponseSerializer(options: .allowFragments)
            let result = jsonSerializer.serializeResponse(request, response, data, nil)
            
            guard case let .success(jsonObject) = result else {
                return .failure(BackendError.jsonSerialization(error: result.error!))
            }

            guard let response = response else {
                let reason = "Response collection could not be serialized due to nil response."
                return .failure(BackendError.objectSerialization(reason: reason))
            }

            return .success(T.collection(from: response, withRepresentation: jsonObject))
        }

        return response(responseSerializer: responseSerializer, completionHandler: completionHandler)
    }
}






struct User: ResponseObjectSerializable, ResponseCollectionSerializable, CustomStringConvertible {
    let username: String
    let name: String

    var description: String {
        return "User: { username: \(username), name: \(name) }"
    }

    init?(response: HTTPURLResponse, representation: Any) {
        guard
            let username = response.url?.lastPathComponent,
            let representation = representation as? [String: Any],
            let name = representation["name"] as? String
        else { return nil }

        self.username = username
        self.name = name
    }
}






Alamofire.request("https://example.com/users").responseCollection { (response: DataResponse<[User]>) in
    debugPrint(response)

    if let users = response.result.value {
        users.forEach { print("- \($0)") }
    }
}











Security


Using a secure HTTPS connection when communicating with servers and web services is an important step in securing sensitive data. By default, Alamofire will evaluate the certificate chain provided by the server using Apple’s built in validation provided by the Security framework. While this guarantees the certificate chain is valid, it does not prevent man-in-the-middle (MITM) attacks or other potential vulnerabilities. In order to mitigate MITM attacks, applications dealing with sensitive customer data or financial information should use certificate or public key pinning provided by the ServerTrustPolicy.



ServerTrustPolicy


The ServerTrustPolicy enumeration evaluates the server trust generally provided by an URLAuthenticationChallenge when connecting to a server over a secure HTTPS connection.


let serverTrustPolicy = ServerTrustPolicy.pinCertificates(
    certificates: ServerTrustPolicy.certificatesInBundle(),
    validateCertificateChain: true,
    validateHost: true
)






There are many different cases of server trust evaluation giving you complete control over the validation process:



		performDefaultEvaluation: Uses the default server trust evaluation while allowing you to control whether to validate the host provided by the challenge.


		pinCertificates: Uses the pinned certificates to validate the server trust. The server trust is considered valid if one of the pinned certificates match one of the server certificates.


		pinPublicKeys: Uses the pinned public keys to validate the server trust. The server trust is considered valid if one of the pinned public keys match one of the server certificate public keys.


		disableEvaluation: Disables all evaluation which in turn will always consider any server trust as valid.


		customEvaluation: Uses the associated closure to evaluate the validity of the server trust thus giving you complete control over the validation process. Use with caution.








Server Trust Policy Manager


The ServerTrustPolicyManager is responsible for storing an internal mapping of server trust policies to a particular host. This allows Alamofire to evaluate each host against a different server trust policy.


let serverTrustPolicies: [String: ServerTrustPolicy] = [
    "test.example.com": .pinCertificates(
        certificates: ServerTrustPolicy.certificatesInBundle(),
        validateCertificateChain: true,
        validateHost: true
    ),
    "insecure.expired-apis.com": .disableEvaluation
]

let sessionManager = SessionManager(
    serverTrustPolicyManager: ServerTrustPolicyManager(policies: serverTrustPolicies)
)







Make sure to keep a reference to the new SessionManager instance, otherwise your requests will all get cancelled when your sessionManager is deallocated.



These server trust policies will result in the following behavior:



		test.example.com will always use certificate pinning with certificate chain and host validation enabled thus requiring the following criteria to be met to allow the TLS handshake to succeed:
		Certificate chain MUST be valid.


		Certificate chain MUST include one of the pinned certificates.


		Challenge host MUST match the host in the certificate chain’s leaf certificate.








		insecure.expired-apis.com will never evaluate the certificate chain and will always allow the TLS handshake to succeed.


		All other hosts will use the default evaluation provided by Apple.






Subclassing Server Trust Policy Manager


If you find yourself needing more flexible server trust policy matching behavior (i.e. wildcarded domains), then subclass the ServerTrustPolicyManager and override the serverTrustPolicyForHost method with your own custom implementation.


class CustomServerTrustPolicyManager: ServerTrustPolicyManager {
    override func serverTrustPolicy(forHost host: String) -> ServerTrustPolicy? {
        var policy: ServerTrustPolicy?

        // Implement your custom domain matching behavior...

        return policy
    }
}











Validating the Host


The .performDefaultEvaluation, .pinCertificates and .pinPublicKeys server trust policies all take a validateHost parameter. Setting the value to true will cause the server trust evaluation to verify that hostname in the certificate matches the hostname of the challenge. If they do not match, evaluation will fail. A validateHost value of false will still evaluate the full certificate chain, but will not validate the hostname of the leaf certificate.



It is recommended that validateHost always be set to true in production environments.






Validating the Certificate Chain


Pinning certificates and public keys both have the option of validating the certificate chain using the validateCertificateChain parameter. By setting this value to true, the full certificate chain will be evaluated in addition to performing a byte equality check against the pinned certificates or public keys. A value of false will skip the certificate chain validation, but will still perform the byte equality check.


There are several cases where it may make sense to disable certificate chain validation. The most common use cases for disabling validation are self-signed and expired certificates. The evaluation would always fail in both of these cases, but the byte equality check will still ensure you are receiving the certificate you expect from the server.



It is recommended that validateCertificateChain always be set to true in production environments.






App Transport Security


With the addition of App Transport Security (ATS) in iOS 9, it is possible that using a custom ServerTrustPolicyManager with several ServerTrustPolicy objects will have no effect. If you continuously see CFNetwork SSLHandshake failed (-9806) errors, you have probably run into this problem. Apple’s ATS system overrides the entire challenge system unless you configure the ATS settings in your app’s plist to disable enough of it to allow your app to evaluate the server trust.


If you run into this problem (high probability with self-signed certificates), you can work around this issue by adding the following to your Info.plist.


<dict>
    <key>NSAppTransportSecurity</key>
    <dict>
        <key>NSExceptionDomains</key>
        <dict>
            <key>example.com</key>
            <dict>
                <key>NSExceptionAllowsInsecureHTTPLoads</key>
                <true/>
                <key>NSExceptionRequiresForwardSecrecy</key>
                <false/>
                <key>NSIncludesSubdomains</key>
                <true/>
                <!-- Optional: Specify minimum TLS version -->
                <key>NSTemporaryExceptionMinimumTLSVersion</key>
                <string>TLSv1.2</string>
            </dict>
        </dict>
    </dict>
</dict>






Whether you need to set the NSExceptionRequiresForwardSecrecy to NO depends on whether your TLS connection is using an allowed cipher suite. In certain cases, it will need to be set to NO. The NSExceptionAllowsInsecureHTTPLoads MUST be set to YES in order to allow the SessionDelegate to receive challenge callbacks. Once the challenge callbacks are being called, the ServerTrustPolicyManager will take over the server trust evaluation. You may also need to specify the NSTemporaryExceptionMinimumTLSVersion if you’re trying to connect to a host that only supports TLS versions less than 1.2.



It is recommended to always use valid certificates in production environments.








Network Reachability


The NetworkReachabilityManager listens for reachability changes of hosts and addresses for both WWAN and WiFi network interfaces.


let manager = NetworkReachabilityManager(host: "www.apple.com")

manager?.listener = { status in
    print("Network Status Changed: \(status)")
}

manager?.startListening()







Make sure to remember to retain the manager in the above example, or no status changes will be reported.



There are some important things to remember when using network reachability to determine what to do next.



		Do NOT use Reachability to determine if a network request should be sent.
		You should ALWAYS send it.








		When Reachability is restored, use the event to retry failed network requests.
		Even though the network requests may still fail, this is a good moment to retry them.








		The network reachability status can be useful for determining why a network request may have failed.
		If a network request fails, it is more useful to tell the user that the network request failed due to being offline rather than a more technical error, such as “request timed out.”












It is recommended to check out WWDC 2012 Session 706, “Networking Best Practices” [https://developer.apple.com/videos/play/wwdc2012-706/] for more info.










Open Radars


The following radars have some affect on the current implementation of Alamofire.



		rdar://21349340 [http://www.openradar.me/radar?id=5517037090635776] - Compiler throwing warning due to toll-free bridging issue in test case


		rdar://26761490 [http://www.openradar.me/radar?id=5010235949318144] - Swift string interpolation causing memory leak with common usage


		rdar://26870455 - Background URL Session Configurations do not work in the simulator


		rdar://26849668 - Some URLProtocol APIs do not properly handle URLRequest








FAQ



What’s the origin of the name Alamofire?


Alamofire is named after the Alamo Fire flower [https://aggie-horticulture.tamu.edu/wildseed/alamofire.html], a hybrid variant of the Bluebonnet, the official state flower of Texas.





What logic belongs in a Router vs. a Request Adapter?


Simple, static data such as paths, parameters and common headers belong in the Router. Dynamic data such as an Authorization header whose value can changed based on an authentication system belongs in a RequestAdapter.


The reason the dynamic data MUST be placed into the RequestAdapter is to support retry operations. When a Request is retried, the original request is not rebuilt meaning the Router will not be called again. The RequestAdapter is called again allowing the dynamic data to be updated on the original request before retrying the Request.









Credits


Alamofire is owned and maintained by the Alamofire Software Foundation [http://alamofire.org]. You can follow them on Twitter at @AlamofireSF [https://twitter.com/AlamofireSF] for project updates and releases.



Security Disclosure


If you believe you have identified a security vulnerability with Alamofire, you should report it as soon as possible via email to security@alamofire.org. Please do not post it to a public issue tracker.







Donations


The ASF [https://github.com/Alamofire/Foundation#members] is looking to raise money to officially register as a federal non-profit organization. Registering will allow us members to gain some legal protections and also allow us to put donations to use, tax free. Donating to the ASF will enable us to:



		Pay our legal fees to register as a federal non-profit organization


		Pay our yearly legal fees to keep the non-profit in good status


		Pay for our mail servers to help us stay on top of all questions and security issues


		Potentially fund test servers to make it easier for us to test the edge cases


		Potentially fund developers to work on one of our projects full-time





The community adoption of the ASF libraries has been amazing. We are greatly humbled by your enthusiam around the projects, and want to continue to do everything we can to move the needle forward. With your continued support, the ASF will be able to improve its reach and also provide better legal safety for the core members. If you use any of our libraries for work, see if your employers would be interested in donating. Our initial goal is to raise $1000 to get all our legal ducks in a row and kickstart this campaign. Any amount you can donate today to help us reach our goal would be greatly appreciated.


[image: Click here to lend your support to: Alamofire Software Foundation and make a donation at pledgie.com !]





License


Alamofire is released under the MIT license. See LICENSE for details.






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/waterwheelDemo/Pods/waterwheel/README.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  [image: Waterwheel - Drupal SDK]


[image: Drupal version]
[image: CocoaPods]
[image: CocoaPods]
[image: Carthage compatible]
[image: Swift version]



Waterwheel Swift SDK for Drupal



Waterwheel makes using Drupal as a backend with iOS, macOS, tvOS, or watchOS enjoyable by combining the most used features of Drupal’s API’s in one SDK. - Formerly known as Drupal iOS SDK.





    Features •
    Configuration •
    Usage •
    Installation •
    Requirements



-------




Features in 4.x



		[x] Session management


		[x] Basic Auth


		[x] Cookie Auth


		[x] Entity CRUD


		[ ] True entities


		[ ] Local caching


		[x] LoginViewController


		[ ] SignupViewController


		[x] AuthButton


		[ ] Views integration into Table Views





Back to Top





Configuration



		import waterwheel


		(Optional) If you’re not using HTTPS you will have to enable the NSAppTransportSecurity [http://stackoverflow.com/questions/31254725/transport-security-has-blocked-a-cleartext-http]








Usage


The code below will give you access to the baseline of features for communicating to a Drupal site.


// Sets the URL to your Drupal site.
waterwheel.setDrupalURL("http://drupal-8-2-0-beta1.dd")






If is important to note that waterwheel makes heavy uses of Closures [https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html], which allows us to pass functions as returns, or store them in variables.



Login


The code below will set up Basic Authentication for each API call.


// Sets HTTPS Basic Authentication Credentials.
waterwheel.setBasicAuthUsernameAndPassword("test", password: "test2");






If you do not want to use Basic Auth, and instead use a cookie, waterwheel provides an authentication method for doing so.
Sessions are handled for you, and will restore state upon closing an app and reopening it.


waterwheel.login(usernameField.text!, password: passwordField.text!) { (success, response, json, error) in
    if (success) {
        print("logged in")
    } else {
        print("failed to login")
    }
}






Waterwheel  provides a button to place anywhere in your app. The code below is iOS specific because of its dependence on UIKit.


let loginButton = waterwheelAuthButton()
// When we press Login, lets show our Login view controller.
loginButton.didPressLogin = {
    let vc = waterwheelLoginViewController()
    // Lets Present our Login View Controller since this closure is for the loginButton press
    self.presentViewController(vc, animated: true, completion: nil)
}

loginButton.didPressLogout = { (success, error) in
    print("logged out")
}
self.view.addSubview(loginButton)






Taking this one step furthure, waterwheel also provides a LoginViewController. You can subclass this controller and overwrite it however you want. For our purposes we will use the default implementation.


let loginButton = waterwheelAuthButton()
// When we press Login, lets show our Login view controller.
loginButton.didPressLogin = {
    // Lets build our default waterwheelLoginViewController.
    let vc = waterwheelLoginViewController()
    //Lets add our function that will be run when the request is completed.
    vc.loginRequestCompleted = { (success, error) in
        if (success) {
            // Do something related to a successfull login
            print("successfull login")
            self.dismissViewControllerAnimated(true, completion: nil)
        } else {
            print (error)
        }
    }
    vc.logoutRequestCompleted = { (success, error) in
        if (success) {
            print("successfull logout")
            // Do something related to a successfull logout
            self.dismissViewControllerAnimated(true, completion: nil)
        } else {
            print (error)
        }
    }
    // Lets Present our Login View Controller since this closure is for the loginButton press
    self.presentViewController(vc, animated: true, completion: nil)
}

loginButton.didPressLogout = { (success, error) in
    print("logged out")
}
self.view.addSubview(loginButton)






Because these two items know whether you are logged in or out, they will always show the correct state of buttons. The UI is up to you, but at its default you get username, password and submit button.





Node Methods



Get


// Get Node 36
waterwheel.nodeGet(nodeId: "36", params: nil, completionHandler: { (success, response, json, error) in
  print(response)
})









Create/post


//build our node body
let body = [
    "type": [
        [
            "target_id": "article"
        ]
    ],
    "title": [
        [
            "value": "Hello World"
        ]
    ],
    "body": [
        [
            "value": "How are you?"
        ]
    ]
]

// Create a new node.
waterwheel.entityPost(entityType: .Node, params: body) { (success, response, json, error) in
    if (success) {
        print(response)
    } else {
        print(error)
    }
}









Update/Put/PATCH


// Update an existing node
waterwheel.nodePatch(nodeId: "36", node: body) { (success, response, json, error) in
    print(response);
}









Delete


// Delete an existing node
waterwheel.nodeDelete(nodeId: "36", params: nil, completionHandler: { (success, response, json, error) in
    print(response)
})













Entity Requests


Since Node is rather specific, Watherweel provides entity methods as well for all entityTypes



Entity Get


waterwheel.entityGet(entityType: .Node, entityId: "36", params: params, completionHandler: completionHandler)









Entity Post


waterwheel.sharedInstance.entityPost(entityType: .Node, params: node, completionHandler: completionHandler)









Entity Patch


waterwheel.entityPatch(entityType: .Node, entityId: "36", params: nodeObject, completionHandler: completionHandler)







Entity Delete


waterwheel.entityDelete(entityType: .Node, entityId: entityId, params: params, completionHandler: completionHandler)













Installation


Waterwheel offers two installations paths. Pick your poison!





Installation



CocoaPods


If you’re using CocoaPods, just add this line to your Podfile:


pod 'waterwheel'






Install by running this command in your terminal:


pod install






Then import the library in all files where you use it:


import waterwheel









Carthage


Just add to your Cartfile:


github "acquia/waterwheel-swift"






Run carthage update to build the framework and drag the built waterwheel.framework into your Xcode project.







Communication



		If you need help, use Stack Overflow [http://stackoverflow.com/questions/tagged/waterwheel-swift]. (Tag ‘waterwheel-swift’)


		If you found a bug, open an issue.


		If you have a feature request, open an issue.


		If you want to contribute, submit a pull request.





Back to Top





Drupal Compatibility



The framework is tracking Drupal 8. As new features come out in 8, they will be added ASAP. Since Drupal 7 and Drupal 8 are completely different in terms of API’s, you will need to use the correct version of waterwheel depending on your Drupal version.







Requirements



		iOS 8.0+ / Mac OS X 10.9+ / tvOS 9.0+ / watchOS 2.0+


		Xcode 7.3+





| waterwheel version | Drupal version   |                                   Notes                                   |
|:——————–:|:—————————:|:—————————-:|:————————————————————————-:|
|          4.x [https://github.com/kylebrowning/waterwheel-swift/tree/4.x]         |            Drupal 8 (Swift)            |
|          3.x [https://github.com/kylebrowning/waterwheel-swift/tree/3.x]         |            Drupal 8 (Obj-C)                   |  |
|          2.x [https://github.com/kylebrowning/waterwheel-swift/tree/2.x]         |            Drupal 6-7 (Obj-C)              |        Requires Services [http://drupal.org/project/services] module                                                                    |


Back to Top






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/Carthage/Checkouts/Alamofire/README.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  [image: Alamofire: Elegant Networking in Swift]


[image: Build Status] [https://travis-ci.org/Alamofire/Alamofire]
[image: CocoaPods Compatible] [https://img.shields.io/cocoapods/v/Alamofire.svg]
[image: Carthage Compatible] [https://github.com/Carthage/Carthage]
[image: Platform] [http://cocoadocs.org/docsets/Alamofire]
[image: Twitter] [http://twitter.com/AlamofireSF]


Alamofire is an HTTP networking library written in Swift.



		Features


		Component Libraries


		Requirements


		Migration Guides


		Communication


		Installation


		Usage
		Intro - Making a Request, Response Handling, Response Validation, Response Caching


		HTTP - HTTP Methods, Parameter Encoding, HTTP Headers, Authentication


		Large Data - Downloading Data to a File, Uploading Data to a Server


		Tools - Statistical Metrics, cURL Command Output








		Advanced Usage
		URL Session - Session Manager, Session Delegate, Request


		Routing - Routing Requests, Adapting and Retrying Requests


		Model Objects - Custom Response Serialization


		Connection - Security, Network Reachability








		Open Radars


		FAQ


		Credits


		Donations


		License






Features



		[x] Chainable Request / Response Methods


		[x] URL / JSON / plist Parameter Encoding


		[x] Upload File / Data / Stream / MultipartFormData


		[x] Download File using Request or Resume Data


		[x] Authentication with URLCredential


		[x] HTTP Response Validation


		[x] Upload and Download Progress Closures with Progress


		[x] cURL Command Output


		[x] Dynamically Adapt and Retry Requests


		[x] TLS Certificate and Public Key Pinning


		[x] Network Reachability


		[x] Comprehensive Unit and Integration Test Coverage


		[x] Complete Documentation [http://cocoadocs.org/docsets/Alamofire]








Component Libraries


In order to keep Alamofire focused specifically on core networking implementations, additional component libraries have been created by the Alamofire Software Foundation [https://github.com/Alamofire/Foundation] to bring additional functionality to the Alamofire ecosystem.



		AlamofireImage [https://github.com/Alamofire/AlamofireImage] - An image library including image response serializers, UIImage and UIImageView extensions, custom image filters, an auto-purging in-memory cache and a priority-based image downloading system.


		AlamofireNetworkActivityIndicator [https://github.com/Alamofire/AlamofireNetworkActivityIndicator] - Controls the visibility of the network activity indicator on iOS using Alamofire. It contains configurable delay timers to help mitigate flicker and can support URLSession instances not managed by Alamofire.








Requirements



		iOS 9.0+ / Mac OS X 10.11+ / tvOS 9.0+ / watchOS 2.0+


		Xcode 8.0+


		Swift 3.0+








Migration Guides



		Alamofire 4.0 Migration Guide [https://github.com/Alamofire/Alamofire/blob/master/Documentation/Alamofire%204.0%20Migration%20Guide.md]


		Alamofire 3.0 Migration Guide [https://github.com/Alamofire/Alamofire/blob/master/Documentation/Alamofire%203.0%20Migration%20Guide.md]


		Alamofire 2.0 Migration Guide [https://github.com/Alamofire/Alamofire/blob/master/Documentation/Alamofire%202.0%20Migration%20Guide.md]








Communication



		If you need help, use Stack Overflow [http://stackoverflow.com/questions/tagged/alamofire]. (Tag ‘alamofire’)


		If you’d like to ask a general question, use Stack Overflow [http://stackoverflow.com/questions/tagged/alamofire].


		If you found a bug, open an issue.


		If you have a feature request, open an issue.


		If you want to contribute, submit a pull request.








Installation



CocoaPods


CocoaPods [http://cocoapods.org] is a dependency manager for Cocoa projects. You can install it with the following command:


$ gem install cocoapods







CocoaPods 1.1.0+ is required to build Alamofire 4.0.0+.



To integrate Alamofire into your Xcode project using CocoaPods, specify it in your Podfile:


source 'https://github.com/CocoaPods/Specs.git'
platform :ios, '10.0'
use_frameworks!

target '<Your Target Name>' do
    pod 'Alamofire', '~> 4.0'
end






Then, run the following command:


$ pod install









Carthage


Carthage [https://github.com/Carthage/Carthage] is a decentralized dependency manager that builds your dependencies and provides you with binary frameworks.


You can install Carthage with Homebrew [http://brew.sh/] using the following command:


$ brew update
$ brew install carthage






To integrate Alamofire into your Xcode project using Carthage, specify it in your Cartfile:


github "Alamofire/Alamofire" ~> 4.0






Run carthage update to build the framework and drag the built Alamofire.framework into your Xcode project.





Manually


If you prefer not to use either of the aforementioned dependency managers, you can integrate Alamofire into your project manually.



Embedded Framework



		Open up Terminal, cd into your top-level project directory, and run the following command “if” your project is not initialized as a git repository:





$ git init







		Add Alamofire as a git submodule [http://git-scm.com/docs/git-submodule] by running the following command:





$ git submodule add https://github.com/Alamofire/Alamofire.git







		Open the new Alamofire folder, and drag the Alamofire.xcodeproj into the Project Navigator of your application’s Xcode project.



It should appear nested underneath your application’s blue project icon. Whether it is above or below all the other Xcode groups does not matter.









		Select the Alamofire.xcodeproj in the Project Navigator and verify the deployment target matches that of your application target.





		Next, select your application project in the Project Navigator (blue project icon) to navigate to the target configuration window and select the application target under the “Targets” heading in the sidebar.





		In the tab bar at the top of that window, open the “General” panel.





		Click on the + button under the “Embedded Binaries” section.





		You will see two different Alamofire.xcodeproj folders each with two different versions of the Alamofire.framework nested inside a Products folder.



It does not matter which Products folder you choose from, but it does matter whether you choose the top or bottom Alamofire.framework.









		Select the top Alamofire.framework for iOS and the bottom one for OS X.



You can verify which one you selected by inspecting the build log for your project. The build target for Alamofire will be listed as either Alamofire iOS, Alamofire macOS, Alamofire tvOS or Alamofire watchOS.









		And that’s it!









The Alamofire.framework is automagically added as a target dependency, linked framework and embedded framework in a copy files build phase which is all you need to build on the simulator and a device.












Usage



Making a Request


import Alamofire

Alamofire.request("https://httpbin.org/get")









Response Handling


Handling the Response of a Request made in Alamofire involves chaining a response handler onto the Request.


Alamofire.request("https://httpbin.org/get").responseJSON { response in
    print(response.request)  // original URL request
    print(response.response) // HTTP URL response
    print(response.data)     // server data
    print(response.result)   // result of response serialization

    if let JSON = response.result.value {
        print("JSON: \(JSON)")
    }
}






In the above example, the responseJSON handler is appended to the Request to be executed once the Request is complete. Rather than blocking execution to wait for a response from the server, a callback [http://en.wikipedia.org/wiki/Callback_%28computer_programming%29] in the form of a closure is specified to handle the response once it’s received. The result of a request is only available inside the scope of a response closure. Any execution contingent on the response or data received from the server must be done within a response closure.



Networking in Alamofire is done asynchronously. Asynchronous programming may be a source of frustration to programmers unfamiliar with the concept, but there are very good reasons [https://developer.apple.com/library/ios/qa/qa1693/_index.html] for doing it this way.



Alamofire contains five different response handlers by default including:


// Response Handler - Unserialized Response
func response(
    queue: DispatchQueue?,
    completionHandler: @escaping (DefaultDownloadResponse) -> Void)
    -> Self

// Response Data Handler - Serialized into Data
func responseData(
    queue: DispatchQueue?,
    completionHandler: @escaping (DataResponse<Data>) -> Void)
    -> Self

// Response String Handler - Serialized into String
func responseString(
    queue: DispatchQueue?,
    encoding: String.Encoding?,
    completionHandler: @escaping (DataResponse<String>) -> Void)
    -> Self

// Response JSON Handler - Serialized into Any
func responseJSON(
    queue: DispatchQueue?,
    completionHandler: @escaping (DataResponse<Any>) -> Void)
    -> Self

// Response PropertyList (plist) Handler - Serialized into Any
func responsePropertyList(
    queue: DispatchQueue?,
    completionHandler: @escaping (DataResponse<Any>) -> Void))
    -> Self






None of the response handlers perform any validation of the HTTPURLResponse it gets back from the server.



For example, response status codes in the 400..<499 and 500..<599 ranges do NOT automatically trigger an Error. Alamofire uses Response Validation method chaining to achieve this.




Response Handler


The response handler does NOT evaluate any of the response data. It merely forwards on all information directly from the URL session delegate. It is the Alamofire equivalent of using cURL to execute a Request.


Alamofire.request("https://httpbin.org/get").response { response in
    print("Request: \(response.request)")
    print("Response: \(response.response)")
    print("Error: \(response.data)")

    if let data = data, let utf8Text = String(data: data, encoding: .utf8) {
        print("Data: \(utf8Text)")
    }
}







We strongly encourage you to leverage the other response serializers taking advantage of Response and Result types.






Response Data Handler


The responseData handler uses the responseDataSerializer (the object that serializes the server data into some other type) to extract the Data returned by the server. If no errors occur and Data is returned, the response Result will be a .success and the value will be of type Data.


Alamofire.request("https://httpbin.org/get").responseData { response in
    debugPrint("All Response Info: \(response)")

    if let data = response.result.value, let utf8Text = String(data: data, encoding: .utf8) {
        print("Data: \(utf8Text)")
    }
}









Response String Handler


The responseString handler uses the responseStringSerializer to convert the Data returned by the server into a String with the specified encoding. If no errors occur and the server data is successfully serialized into a String, the response Result will be a .success and the value will be of type String.


Alamofire.request("https://httpbin.org/get").responseString { response in
    print("Success: \(response.result.isSuccess)")
    print("Response String: \(response.result.value)")
}







If no encoding is specified, Alamofire will use the text encoding specified in the HTTPURLResponse from the server. If the text encoding cannot be determined by the server response, it defaults to .isoLatin1.






Response JSON Handler


The responseJSON handler uses the responseJSONSerializer to convert the Data returned by the server into an Any type using the specified JSONSerialization.ReadingOptions. If no errors occur and the server data is successfully serialized into a JSON object, the response Result will be a .success and the value will be of type Any.


Alamofire.request("https://httpbin.org/get").responseJSON { response in
    debugPrint(response)

    if let json = response.result.value {
        print("JSON: \(json)")
    }
}







All JSON serialization is handled by the JSONSerialization API in the Foundation framework.






Chained Response Handlers


Response handlers can even be chained:


Alamofire.request("https://httpbin.org/get")
    .responseString { response in
        print("Response String: \(response.result.value)")
    }
    .responseJSON { response in
        print("Response JSON: \(response.result.value)")
    }







It is important to note that using multiple response handlers on the same Request requires the server data to be serialized multiple times. Once for each response handler.






Response Handler Queue


Reponse handlers by default are executed on the main dispatch queue. However, a custom dispatch queue can be provided instead.


let utilityQueue = DispatchQueue.global(qos: .utility)

Alamofire.request("https://httpbin.org/get").responseJSON(queue: utilityQueue) { response in
    print("Executing response handler on utility queue")
}











Response Validation


By default, Alamofire treats any completed request to be successful, regardless of the content of the response. Calling validate before a response handler causes an error to be generated if the response had an unacceptable status code or MIME type.



Manual Validation


Alamofire.request("https://httpbin.org/get")
    .validate(statusCode: 200..<300)
    .validate(contentType: ["application/json"])
    .response { response in
        switch response.result {
        case .success:
            print("Validation Successful")
        case .failure(let error):
            print(error)
        }
    }









Automatic Validation


Automatically validates status code within 200...299 range, and that the Content-Type header of the response matches the Accept header of the request, if one is provided.


Alamofire.request("https://httpbin.org/get").validate().responseJSON { response in
    switch response.result {
    case .success:
        print("Validation Successful")
    case .failure(let error):
        print(error)
    }
}











Response Caching


Response Caching is handled on the system framework level by URLCache [https://developer.apple.com/reference/foundation/urlcache]. It provides a composite in-memory and on-disk cache and lets you manipulate the sizes of both the in-memory and on-disk portions.



By default, Alamofire leverages the shared URLCache. In order to customize it, see the Session Manager Configurations section.






HTTP Methods


The HTTPMethod enumeration lists the HTTP methods defined in RFC 7231 §4.3 [http://tools.ietf.org/html/rfc7231#section-4.3]:


public enum HTTPMethod: String {
    case options = "OPTIONS"
    case get     = "GET"
    case head    = "HEAD"
    case post    = "POST"
    case put     = "PUT"
    case patch   = "PATCH"
    case delete  = "DELETE"
    case trace   = "TRACE"
    case connect = "CONNECT"
}






These values can be passed as the method argument to the Alamofire.request API:


Alamofire.request("https://httpbin.org/get") // method defaults to `.get`

Alamofire.request("https://httpbin.org/post", method: .post)
Alamofire.request("https://httpbin.org/put", method: .put)
Alamofire.request("https://httpbin.org/delete", method: .delete)







The Alamofire.request method parameter defaults to .get.






Parameter Encoding


Alamofire supports three types of parameter encoding including: URL, JSON and PropertyList. It can also support any custom encoding that conforms to the ParameterEncoding protocol.



URL Encoding


The URLEncoding type creates a url-encoded query string to be set as or appended to any existing URL query string or set as the HTTP body of the URL request. Whether the query string is set or appended to any existing URL query string or set as the HTTP body depends on the Destination of the encoding. The Destination enumeration has three cases:



		.methodDependent - Applies encoded query string result to existing query string for GET, HEAD and DELETE requests and sets as the HTTP body for requests with any other HTTP method.


		.queryString - Sets or appends encoded query string result to existing query string.


		.httpBody - Sets encoded query string result as the HTTP body of the URL request.





The Content-Type HTTP header field of an encoded request with HTTP body is set to application/x-www-form-urlencoded; charset=utf-8. Since there is no published specification for how to encode collection types, the convention of appending [] to the key for array values (foo[]=1&foo[]=2), and appending the key surrounded by square brackets for nested dictionary values (foo[bar]=baz).



GET Request With URL-Encoded Parameters


let parameters: Parameters = ["foo": "bar"]

// All three of these calls are equivalent
Alamofire.request("https://httpbin.org/get", parameters: parameters) // encoding defaults to `URLEncoding.default`
Alamofire.request("https://httpbin.org/get", parameters: parameters, encoding: URLEncoding.default)
Alamofire.request("https://httpbin.org/get", parameters: parameters, encoding: URLEncoding(destination: .methodDependent))

// https://httpbin.org/get?foo=bar









POST Request With URL-Encoded Parameters


let parameters: Parameters = [
    "foo": "bar",
    "baz": ["a", 1],
    "qux": [
        "x": 1,
        "y": 2,
        "z": 3
    ]
]

// All three of these calls are equivalent
Alamofire.request("https://httpbin.org/post", parameters: parameters)
Alamofire.request("https://httpbin.org/post", parameters: parameters, encoding: URLEncoding.default)
Alamofire.request("https://httpbin.org/post", parameters: parameters, encoding: URLEncoding.httpBody)

// HTTP body: foo=bar&baz[]=a&baz[]=1&qux[x]=1&qux[y]=2&qux[z]=3











JSON Encoding


The JSONEncoding type creates a JSON representation of the parameters object, which is set as the HTTP body of the request. The Content-Type HTTP header field of an encoded request is set to application/json.



POST Request with JSON-Encoded Parameters


let parameters: Parameters = [
    "foo": [1,2,3],
    "bar": [
        "baz": "qux"
    ]
]

// Both calls are equivalent
Alamofire.request("https://httpbin.org/post", method: .post, parameters: parameters, encoding: JSONEncoding.default)
Alamofire.request("https://httpbin.org/post", method: .post, parameters: parameters, encoding: JSONEncoding(options: []))

// HTTP body: {"foo": [1, 2, 3], "bar": {"baz": "qux"}}











Property List Encoding


The PropertyListEncoding uses PropertyListSerialization to create a plist representation of the parameters object, according to the associated format and write options values, which is set as the body of the request. The Content-Type HTTP header field of an encoded request is set to application/x-plist.





Custom Encoding


In the event that the provided ParameterEncoding types do not meet your needs, you can create your own custom encoding. Here’s a quick example of how you could build a custom JSONStringArrayEncoding type to encode a JSON string array onto a Request.


struct JSONStringArrayEncoding: ParameterEncoding {
    private let array: [String]

    init(array: [String]) {
        self.array = array
    }

    func encode(_ urlRequest: URLRequestConvertible, with parameters: Parameters?) throws -> URLRequest {
        var urlRequest = urlRequest.urlRequest

        let data = try JSONSerialization.data(withJSONObject: array, options: [])

        if urlRequest.value(forHTTPHeaderField: "Content-Type") == nil {
            urlRequest.setValue("application/json", forHTTPHeaderField: "Content-Type")
        }

        urlRequest.httpBody = data

        return urlRequest
    }
}









Manual Parameter Encoding of a URLRequest


The ParameterEncoding APIs can be used outside of making network requests.


let url = URL(string: "https://httpbin.org/get")!
var urlRequest = URLRequest(url: url)

let parameters: Parameters = ["foo": "bar"]
let encodedURLRequest = try URLEncoding.queryString.encode(urlRequest, with: parameters)











HTTP Headers


Adding a custom HTTP header to a Request is supported directly in the global request method. This makes it easy to attach HTTP headers to a Request that can be constantly changing.


let headers: HTTPHeaders = [
    "Authorization": "Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==",
    "Accept": "application/json"
]

Alamofire.request("https://httpbin.org/headers", headers: headers).responseJSON { response in
    debugPrint(response)
}







For HTTP headers that do not change, it is recommended to set them on the URLSessionConfiguration so they are automatically applied to any URLSessionTask created by the underlying URLSession. For more information, see the Session Manager Configurations section.



The default Alamofire SessionManager provides a default set of headers for every Request. These include:



		Accept-Encoding, which defaults to gzip;q=1.0, compress;q=0.5, per RFC 7230 §4.2.3 [https://tools.ietf.org/html/rfc7230#section-4.2.3].


		Accept-Language, which defaults to up to the top 6 preferred languages on the system, formatted like en;q=1.0, per RFC 7231 §5.3.5 [https://tools.ietf.org/html/rfc7231#section-5.3.5].


		User-Agent, which contains versioning information about the current app. For example: iOS Example/1.0 (com.alamofire.iOS-Example; build:1; iOS 10.0.0) Alamofire/4.0.0, per RFC 7231 §5.5.3 [https://tools.ietf.org/html/rfc7231#section-5.5.3].





If you need to customize these headers, a custom URLSessionManagerConfiguration should be created, the defaultHTTPHeaders property updated and the configuration applied to a new SessionManager instance.





Authentication


Authentication is handled on the system framework level by URLCredential [https://developer.apple.com/reference/foundation/nsurlcredential] and URLAuthenticationChallenge [https://developer.apple.com/reference/foundation/urlauthenticationchallenge].


Supported Authentication Schemes



		HTTP Basic [http://en.wikipedia.org/wiki/Basic_access_authentication]


		HTTP Digest [http://en.wikipedia.org/wiki/Digest_access_authentication]


		Kerberos [http://en.wikipedia.org/wiki/Kerberos_%28protocol%29]


		NTLM [http://en.wikipedia.org/wiki/NT_LAN_Manager]






HTTP Basic Authentication


The authenticate method on a Request will automatically provide a URLCredential to a URLAuthenticationChallenge when appropriate:


let user = "user"
let password = "password"

Alamofire.request("https://httpbin.org/basic-auth/\(user)/\(password)")
    .authenticate(user: user, password: password)
    .responseJSON { response in
        debugPrint(response)
    }






Depending upon your server implementation, an Authorization header may also be appropriate:


let user = "user"
let password = "password"

var headers: HTTPHeaders = [:]

if let authorizationHeader = Request.authorizationHeader(user: user, password: password) {
    headers[authorizationHeader.key] = authorizationHeader.value
}

Alamofire.request("https://httpbin.org/basic-auth/user/password", headers: headers)
    .responseJSON { response in
        debugPrint(response)
    }









Authentication with URLCredential


let user = "user"
let password = "password"

let credential = URLCredential(user: user, password: password, persistence: .forSession)

Alamofire.request("https://httpbin.org/basic-auth/\(user)/\(password)")
    .authenticate(usingCredential: credential)
    .responseJSON { response in
        debugPrint(response)
    }







It is important to note that when using a URLCredential for authentication, the underlying URLSession will actually end up making two requests if a challenge is issued by the server. The first request will not include the credential which “may” trigger a challenge from the server. The challenge is then received by Alamofire, the credential is appended and the request is retried by the underlying URLSession.








Downloading Data to a File


Requests made in Alamofire that fetch data from a server can download the data in-memory or on-disk. The Alamofire.request APIs used in all the examples so far always downloads the server data in-memory. This is great for smaller payloads because it’s more efficient, but really bad for larger payloads because the download could run your entire application out-of-memory. Because of this, you can also use the Alamofire.download APIs to download the server data to a temporary file on-disk.


Alamofire.download("https://httpbin.org/image/png").responseData { response in
    if let data = response.result.value {
        let image = UIImage(data: data)
    }
}







The Alamofire.download APIs should also be used if you need to download data while your app is in the background. For more information, please see the Session Manager Configurations section.




Download File Destination


You can also provide a DownloadFileDestination closure to move the file from the temporary directory to a final destination. Before the temporary file is actually moved to the destinationURL, the DownloadOptions specified in the closure will be executed. The two currently supported DownloadOptions are:



		.createIntermediateDirectories - Creates intermediate directories for the destination URL if specified.


		.removePreviousFile - Removes a previous file from the destination URL if specified.





let destination: DownloadRequest.DownloadFileDestination = { _, _ in
    let documentsURL = FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)[0]
    let fileURL = documentsURL.appendPathComponent("pig.png")

    return (fileURL, [.removePreviousFile, .createIntermediateDirectories])
}

Alamofire.download(urlString, to: destination).response { response in
    print(response)

    if response.result.isSuccess, let imagePath = response.destinationURL?.path {
        let image = UIImage(contentsOfFile: imagePath)
    }
}






You can also use the suggested download destination API.


let destination = DownloadRequest.suggestedDownloadDestination(directory: .documentDirectory)
Alamofire.download("https://httpbin.org/image/png", to: destination)









Download Progress


Many times it can be helpful to report download progress to the user. Any DownloadRequest can report download progress using the downloadProgress API.


Alamofire.download("https://httpbin.org/image/png")
    .downloadProgress { progress in
        print("Download Progress: \(progress.fractionCompleted)")
    }
    .responseData { response in
        if let data = response.result.value {
            let image = UIImage(data: data)
        }
    }






The downloadProgress API also takes a queue parameter which defines which DispatchQueue the download progress closure should be called on.


let utilityQueue = DispatchQueue.global(qos: .utility)

Alamofire.download("https://httpbin.org/image/png")
    .downloadProgress(queue: utilityQueue) { progress in
        print("Download Progress: \(progress.fractionCompleted)")
    }
    .responseData { response in
        if let data = response.result.value {
            let image = UIImage(data: data)
        }
    }









Resuming a Download


If a DownloadRequest is cancelled or interrupted, the underlying URL session may generate resume data for the active DownloadRequest. If this happens, the resume data can be re-used to restart the DownloadRequest where it left off. The resume data can be accessed through the download response, then reused when trying to restart the request.


class ImageRequestor {
    private var resumeData: Data?
    private var image: UIImage?

    func fetchImage(completion: (UIImage?) -> Void) {
        guard image == nil else { completion(image) ; return }

        let destination: DownloadRequest.DownloadFileDestination = { _, _ in
            let documentsURL = FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)[0]
            let fileURL = documentsURL.appendPathComponent("pig.png")

            return (fileURL, [.removePreviousFile, .createIntermediateDirectories])
        }

        let request: DownloadRequest

        if let resumeData = resumeData {
            request = Alamofire.download(resumingWith: resumeData)
        } else {
            request = Alamofire.download("https://httpbin.org/image/png")
        }

        request.responseData { response in
            switch response.result {
            case .success(let data):
                self.image = UIImage(data: data)
            case .failure:
                self.resumeData = response.resumeData
            }
        }
    }
}











Uploading Data to a Server


When sending relatively small amounts of data to a server using JSON or URL encoded parameters, the Alamofire.request APIs are usually sufficient. If you need to send much larger amounts of data from a file URL or an InputStream, then the Alamofire.upload APIs are what you want to use.



The Alamofire.upload APIs should also be used if you need to upload data while your app is in the background. For more information, please see the Session Manager Configurations section.




Uploading Data


let imageData = UIPNGRepresentation(image)!

Alamofire.upload(imageData, to: "https://httpbin.org/post").responseJSON { response in
    debugPrint(response)
}









Uploading a File


let fileURL = Bundle.main.url(forResource: "video", withExtension: "mov")

Alamofire.upload(fileURL, to: "https://httpbin.org/post").responseJSON { response in
    debugPrint(response)
}









Uploading Multipart Form Data


Alamofire.upload(
    multipartFormData: { multipartFormData in
        multipartFormData.append(unicornImageURL, withName: "unicorn")
        multipartFormData.append(rainbowImageURL, withName: "rainbow")
    },
    to: "https://httpbin.org/post",
    encodingCompletion: { encodingResult in
        switch encodingResult {
        case .success(let upload, _, _):
            upload.responseJSON { response in
                debugPrint(response)
            }
        case .failure(let encodingError):
            print(encodingError)
        }
    }
)









Upload Progress


While your user is waiting for their upload to complete, sometimes it can be handy to show the progress of the upload to the user. Any UploadRequest can report both upload progress and download progress of the response data using the uploadProgress and downloadProgress APIs.


let fileURL = Bundle.main.url(forResource: "video", withExtension: "mov")

Alamofire.upload(fileURL, to: "https://httpbin.org/post")
    .uploadProgress { progress in // main queue by default
        print("Upload Progress: \(progress.fractionCompleted)")
    }
    .downloadProgress { progress in // main queue by default
        print("Download Progress: \(progress.fractionCompleted)")
    }
    .responseJSON { response in
        debugPrint(response)
    }











Statistical Metrics



Timeline


Alamofire collects timings throughout the lifecycle of a Request and creates a Timeline object exposed as a property on all response types.


Alamofire.request("https://httpbin.org/get").responseJSON { response in
    print(response.timeline)
}






The above reports the following Timeline info:



		Latency: 0.428 seconds


		Request Duration: 0.428 seconds


		Serialization Duration: 0.001 seconds


		Total Duration: 0.429 seconds








URL Session Task Metrics


In iOS and tvOS 10 and macOS 10.12, Apple introduced the new URLSessionTaskMetrics [https://developer.apple.com/reference/foundation/urlsessiontaskmetrics] APIs. The task metrics encapsulate some fantastic statistical information about the request and response execution. The API is very similar to the Timeline, but provides many more statistics that Alamofire doesn’t have access to compute. The metrics can be accessed through any response type.


Alamofire.request("https://httpbin.org/get").responseJSON { response in
    print(response.metrics)
}






It’s important to note that these APIs are only available on iOS and tvOS 10 and macOS 10.12. Therefore, depending on your deployment target, you may need to use these inside availability checks:


Alamofire.request("https://httpbin.org/get").responseJSON { response in
    if #available(iOS 10.0. *) {
        print(response.metrics)
    }
}











cURL Command Output


Debugging platform issues can be frustrating. Thankfully, Alamofire Request objects conform to both the CustomStringConvertible and CustomDebugStringConvertible protocols to provide some VERY helpful debugging tools.



CustomStringConvertible


let request = Alamofire.request("https://httpbin.org/ip")

print(request)
// GET https://httpbin.org/ip (200)









CustomDebugStringConvertible


let request = Alamofire.request("https://httpbin.org/get", parameters: ["foo": "bar"])
debugPrint(request)






Outputs:


$ curl -i \
    -H "User-Agent: Alamofire/4.0.0" \
    -H "Accept-Encoding: gzip;q=1.0, compress;q=0.5" \
    -H "Accept-Language: en;q=1.0,fr;q=0.9,de;q=0.8,zh-Hans;q=0.7,zh-Hant;q=0.6,ja;q=0.5" \
    "https://httpbin.org/get?foo=bar"















Advanced Usage


Alamofire is built on URLSession and the Foundation URL Loading System. To make the most of this framework, it is recommended that you be familiar with the concepts and capabilities of the underlying networking stack.


Recommended Reading



		URL Loading System Programming Guide [https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.html]


		URLSession Class Reference [https://developer.apple.com/reference/foundation/nsurlsession]


		URLCache Class Reference [https://developer.apple.com/reference/foundation/urlcache]


		URLAuthenticationChallenge Class Reference [https://developer.apple.com/reference/foundation/urlauthenticationchallenge]






Session Manager


Top-level convenience methods like Alamofire.request use a default instance of Alamofire.SessionManager, which is configured with the default URLSessionConfiguration.


As such, the following two statements are equivalent:


Alamofire.request("https://httpbin.org/get")






let sessionManager = Alamofire.SessionManager.default
sessionManager.request("https://httpbin.org/get")






Applications can create session managers for background and ephemeral sessions, as well as new managers that customize the default session configuration, such as for default headers (httpAdditionalHeaders) or timeout interval (timeoutIntervalForRequest).



Creating a Session Manager with Default Configuration


let configuration = URLSessionConfiguration.default
let sessionManager = Alamofire.SessionManager(configuration: configuration)









Creating a Session Manager with Background Configuration


let configuration = URLSessionConfiguration.background(withIdentifier: "com.example.app.background")
let sessionManager = Alamofire.SessionManager(configuration: configuration)









Creating a Session Manager with Ephemeral Configuration


let configuration = URLSessionConfiguration.ephemeral
let sessionManager = Alamofire.SessionManager(configuration: configuration)









Modifying the Session Configuration


var defaultHeaders = Alamofire.SessionManager.default.defaultHTTPHeaders
defaultHeaders["DNT"] = "1 (Do Not Track Enabled)"

let configuration = URLSessionConfiguration.default
configuration.httpAdditionalHeaders = defaultHeaders

let sessionManager = Alamofire.SessionManager(configuration: configuration)







This is not recommended for Authorization or Content-Type headers. Instead, use the headers parameter in the top-level Alamofire.request APIs, URLRequestConvertible and ParameterEncoding, respectively.








Session Delegate


By default, an Alamofire SessionManager instance creates a SessionDelegate object to handle all the various types of delegate callbacks that are generated by the underlying URLSession. The implementations of each delegate method handle the most common use cases for these types of calls abstracting the complexity away from the top-level APIs. However, advanced users may find the need to override the default functionality for various reasons.



Override Closures


The first way to customize the SessionDelegate behavior is through the use of the override closures. Each closure gives you the ability to override the implementation of the matching SessionDelegate API, yet still use the default implementation for all other APIs. This makes it easy to customize subsets of the delegate functionality. Here are a few examples of some of the override closures available:


/// Overrides default behavior for URLSessionDelegate method `urlSession(_:didReceive:completionHandler:)`.
open var sessionDidReceiveChallenge: ((URLSession, URLAuthenticationChallenge) -> (URLSession.AuthChallengeDisposition, URLCredential?))?

/// Overrides default behavior for URLSessionDelegate method `urlSessionDidFinishEvents(forBackgroundURLSession:)`.
open var sessionDidFinishEventsForBackgroundURLSession: ((URLSession) -> Void)?

/// Overrides default behavior for URLSessionTaskDelegate method `urlSession(_:task:willPerformHTTPRedirection:newRequest:completionHandler:)`.
open var taskWillPerformHTTPRedirection: ((URLSession, URLSessionTask, HTTPURLResponse, URLRequest) -> URLRequest?)?

/// Overrides default behavior for URLSessionDataDelegate method `urlSession(_:dataTask:willCacheResponse:completionHandler:)`.
open var dataTaskWillCacheResponse: ((URLSession, URLSessionDataTask, CachedURLResponse) -> CachedURLResponse?)?






The following is a short example of how to use the taskWillPerformHTTPRedirection to avoid following redirects to any apple.com domains.


let sessionManager = Alamofire.SessionManager(configuration: URLSessionConfiguration.default)
let delegate: Alamofire.SessionDelegate = sessionManager.delegate

delegate.taskWillPerformHTTPRedirection = { session, task, response, request in
    var finalRequest = request

    if
        let originalRequest = task.originalRequest,
        let urlString = originalRequest.url?.urlString,
        urlString.contains("apple.com")
    {
        finalRequest = originalRequest
    }

    return finalRequest
}









Subclassing


Another way to override the default implementation of the SessionDelegate is to subclass it. Subclassing allows you completely customize the behavior of the API or to create a proxy for the API and still use the default implementation. Creating a proxy allows you to log events, emit notifications, provide pre and post hook implementations, etc. Here’s a quick example of subclassing the SessionDelegate and logging a message when a redirect occurs.


class LoggingSessionDelegate: SessionDelegate {
    override func urlSession(
        _ session: URLSession,
        task: URLSessionTask,
        willPerformHTTPRedirection response: HTTPURLResponse,
        newRequest request: URLRequest,
        completionHandler: @escaping (URLRequest?) -> Void)
    {
        print("URLSession will perform HTTP redirection to request: \(request)")

        super.urlSession(
            session,
            task: task,
            willPerformHTTPRedirection: response,
            newRequest: request,
            completionHandler: completionHandler
        )
    }
}






Generally speaking, either the default implementation or the override closures should provide the necessary functionality required. Subclassing should only be used as a last resort.



It is important to keep in mind that the subdelegates are initialized and destroyed in the default implementation. Be careful when subclassing to not introduce memory leaks.








Request


The result of a request, download, upload or stream methods are a DataRequest, DownloadRequest, UploadRequest and StreamRequest which all inherit from Request. All Request instances are always created by an owning session manager, and never initialized directly.


Each subclass has specialized methods such as authenticate, validate, responseJSON and uploadProgress that each return the caller instance in order to facilitate method chaining.


Requests can be suspended, resumed and cancelled:



		suspend(): Suspends the underlying task and dispatch queue.


		resume(): Resumes the underlying task and dispatch queue. If the owning manager does not have startRequestsImmediately set to true, the request must call resume() in order to start.


		cancel(): Cancels the underlying task, producing an error that is passed to any registered response handlers.








Routing Requests


As apps grow in size, it’s important to adopt common patterns as you build out your network stack. An important part of that design is how to route your requests. The Alamofire URLConvertible and URLRequestConvertible protocols along with the Router design pattern are here to help.



URLConvertible


Types adopting the URLConvertible protocol can be used to construct URLs, which are then used to construct URL requests internally. String, URL, and URLComponents conform to URLConvertible by default, allowing any of them to be passed as url parameters to the request, upload, and download methods:


let urlString = "https://httpbin.org/post"
Alamofire.request(urlString, method: .post)

let url = URL(string: urlString)!
Alamofire.request(url, method: .post)

let urlComponents = URLComponents(url: url, resolvingAgainstBaseURL: true)
Alamofire.request(.post, URLComponents)






Applications interacting with web applications in a significant manner are encouraged to have custom types conform to URLConvertible as a convenient way to map domain-specific models to server resources.



Type-Safe Routing


extension User: URLConvertible {
    static let baseURLString = "https://example.com"

    func asURL() throws -> URL {
        let urlString = User.baseURLString + "/users/\(username)/"
        return try urlString.asURL()
    }
}






let user = User(username: "mattt")
Alamofire.request(user) // https://example.com/users/mattt











URLRequestConvertible


Types adopting the URLRequestConvertible protocol can be used to construct URL requests. URLRequest conforms to URLRequestConvertible by default, allowing it to be passed into request, upload, and download methods directly (this is the recommended way to specify custom HTTP body for individual requests):


let url = URL(string: "https://httpbin.org/post")!
var urlRequest = URLRequest(url: url)
urlRequest.httpMethod = "POST"

let parameters = ["foo": "bar"]

do {
    urlRequest.httpBody = try JSONSerialization.data(withJSONObject: parameters, options: [])
} catch {
    // No-op
}

urlRequest.setValue("application/json", forHTTPHeaderField: "Content-Type")

Alamofire.request(urlRequest)






Applications interacting with web applications in a significant manner are encouraged to have custom types conform to URLRequestConvertible as a way to ensure consistency of requested endpoints. Such an approach can be used to abstract away server-side inconsistencies and provide type-safe routing, as well as manage authentication credentials and other state.



API Parameter Abstraction


enum Router: URLRequestConvertible {
    case search(query: String, page: Int)

    static let baseURLString = "https://example.com"
    static let perPage = 50

    // MARK: URLRequestConvertible

    func asURLRequest() throws -> URLRequest {
        let result: (path: String, parameters: Parameters) = {
            switch self {
            case let .search(query, page) where page > 0:
                return ("/search", ["q": query, "offset": Router.perPage * page])
            case let .search(query, _):
                return ("/search", ["q": query])
            }
        }()

        let url = try Router.baseURLString.asURL()
        let urlRequest = URLRequest(url: url.appendingPathComponent(result.path))

        return try URLEncoding.default.encode(urlRequest, with: result.parameters)
    }
}






Alamofire.request(Router.search(query: "foo bar", page: 1)) // ?q=foo%20bar&offset=50









CRUD & Authorization


import Alamofire

enum Router: URLRequestConvertible {
    case createUser(parameters: Parameters)
    case readUser(username: String)
    case updateUser(username: String, parameters: Parameters)
    case destroyUser(username: String)

    static let baseURLString = "https://example.com"

    var method: HTTPMethod {
        switch self {
        case .createUser:
            return .post
        case .readUser:
            return .get
        case .updateUser:
            return .put
        case .destroyUser:
            return .delete
        }
    }

    var path: String {
        switch self {
        case .createUser:
            return "/users"
        case .readUser(let username):
            return "/users/\(username)"
        case .updateUser(let username, _):
            return "/users/\(username)"
        case .destroyUser(let username):
            return "/users/\(username)"
        }
    }

    // MARK: URLRequestConvertible

    func asURLRequest() throws -> URLRequest {
        let url = try Router.baseURLString.asURL()

        var urlRequest = URLRequest(url: url.appendingPathComponent(path))
        urlRequest.httpMethod = method.rawValue

        switch self {
        case .createUser(let parameters):
            urlRequest = try URLEncoding.default.encode(urlRequest, with: parameters)
        case .updateUser(_, let parameters):
            urlRequest = try URLEncoding.default.encode(urlRequest, with: parameters)
        default:
            break
        }

        return urlRequest
    }
}






Alamofire.request(Router.readUser("mattt")) // GET /users/mattt













Adapting and Retrying Requests


Most web services these days are behind some sort of authentication system. One of the more common ones today is OAuth. This generally involves generating an access token authorizing your application or user to call the various supported web services. While creating these initial access tokens can be laborsome, it can be even more complicated when your access token expires and you need to fetch a new one. There are many thread-safety issues that need to be considered.


The RequestAdapter and RequestRetrier protocols were created to make it much easier to create a thread-safe authentication system for a specific set of web services.



RequestAdapter


The RequestAdapter protocol allows each Request made on a SessionManager to be inspected and adapted before being created. One very specific way to use an adapter is to append an Authorization header to requests behind a certain type of authentication.


class AccessTokenAdapter: RequestAdapter {
    private let accessToken: String

    init(accessToken: String) {
        self.accessToken = accessToken
    }

    func adapt(_ urlRequest: URLRequest) throws -> URLRequest {
        var urlRequest = urlRequest

        if urlRequest.urlString.hasPrefix("https://httpbin.org") {
            urlRequest.setValue("Bearer " + accessToken, forHTTPHeaderField: "Authorization")
        }

        return urlRequest
    }
}






let sessionManager = SessionManager()
sessionManager.adapter = AccessTokenAdapter(accessToken: "1234")

sessionManager.request("https://httpbin.org/get")









RequestRetrier


The RequestRetrier protocol allows a Request that encountered an Error while being executed to be retried. When using both the RequestAdapter and RequestRetrier protocols together, you can create credential refresh systems for OAuth1, OAuth2, Basic Auth and even exponential backoff retry policies. The possibilities are endless. Here’s an example of how you could implement a refresh flow for OAuth2 access tokens.



DISCLAIMER: This is NOT a global OAuth2 solution. It is merely an example demonstrating how one could use the RequestAdapter in conjunction with the RequestRetrier to create a thread-safe refresh system.




To reiterate, do NOT copy this sample code and drop it into a production application. This is merely an example. Each authentication system must be tailored to a particular platform and authentication type.



class OAuth2Handler: RequestAdapter, RequestRetrier {
    private typealias RefreshCompletion = (_ succeeded: Bool, _ accessToken: String?, _ refreshToken: String?) -> Void

    private let sessionManager: SessionManager = {
        let configuration = URLSessionConfiguration.default
        configuration.httpAdditionalHeaders = SessionManager.defaultHTTPHeaders

        return SessionManager(configuration: configuration)
    }()

    private let lock = NSLock()

    private var clientID: String
    private var baseURLString: String
    private var accessToken: String
    private var refreshToken: String

    private var isRefreshing = false
    private var requestsToRetry: [RequestRetryCompletion] = []

    // MARK: - Initialization

    public init(clientID: String, baseURLString: String, accessToken: String, refreshToken: String) {
        self.clientID = clientID
        self.baseURLString = baseURLString
        self.accessToken = accessToken
        self.refreshToken = refreshToken
    }

    // MARK: - RequestAdapter

    func adapt(_ urlRequest: URLRequest) throws -> URLRequest {
        if let url = urlRequest.url, url.urlString.hasPrefix(baseURLString) {
            var urlRequest = urlRequest
            urlRequest.setValue("Bearer " + accessToken, forHTTPHeaderField: "Authorization")
            return urlRequest
        }

        return urlRequest
    }

    // MARK: - RequestRetrier

    func should(_ manager: SessionManager, retry request: Request, with error: Error, completion: @escaping RequestRetryCompletion) {
        lock.lock() ; defer { lock.unlock() }

        if let response = request.task.response as? HTTPURLResponse, response.statusCode == 401 {
            requestsToRetry.append(completion)

            if !isRefreshing {
                refreshTokens { [weak self] succeeded, accessToken, refreshToken in
                    guard let strongSelf = self else { return }

                    strongSelf.lock.lock() ; defer { strongSelf.lock.unlock() }

                    if let accessToken = accessToken, let refreshToken = refreshToken {
                        strongSelf.accessToken = accessToken
                        strongSelf.refreshToken = refreshToken
                    }

                    strongSelf.requestsToRetry.forEach { $0(succeeded, 0.0) }
                    strongSelf.requestsToRetry.removeAll()
                }
            }
        } else {
            completion(false, 0.0)
        }
    }

    // MARK: - Private - Refresh Tokens

    private func refreshTokens(completion: @escaping RefreshCompletion) {
        guard !isRefreshing else { return }

        isRefreshing = true

        let urlString = "\(baseURLString)/oauth2/token"

        let parameters: [String: Any] = [
            "access_token": accessToken,
            "refresh_token": refreshToken,
            "client_id": clientID,
            "grant_type": "refresh_token"
        ]

        sessionManager.request(urlString, method: .post, parameters: parameters, encoding: JSONEncoding.default)
            .responseJSON { [weak self] response in
                guard let strongSelf = self else { return }

                if let json = response.result.value as? [String: String] {
                    completion(true, json["access_token"], json["refresh_token"])
                } else {
                    completion(false, nil, nil)
                }

                strongSelf.isRefreshing = false
            }
    }
}






let baseURLString = "https://some.domain-behind-oauth2.com"

let oauthHandler = OAuth2Handler(
    clientID: "12345678",
    baseURLString: baseURLString,
    accessToken: "abcd1234",
    refreshToken: "ef56789a"
)

let sessionManager = SessionManager()
sessionManager.adapter = oauthHandler
sessionManager.retrier = oauthHandler

let urlString = "\(baseURLString)/some/endpoint"

sessionManager.request(urlString).validate().responseJSON { response in
    debugPrint(response)
}






Once the OAuth2Handler is applied as both the adapter and retrier for the SessionManager, it will handle an invalid access token error by automatically refreshing the access token and retrying all failed requests in the same order they failed.



If you needed them to execute in the same order they were created, you could sort them by their task identifiers.



The example above only checks for a 401 response code which is not nearly robust enough, but does demonstrate how one could check for an invalid access token error. In a production application, one would want to check the realm and most likely the www-authenticate header response although it depends on the OAuth2 implementation.


Another important note is that this authentication system could be shared between multiple session managers. For example, you may need to use both a default and ephemeral session configuration for the same set of web services. The example above allows the same oauthHandler instance to be shared across multiple session managers to manage the single refresh flow.







Custom Response Serialization



Handling Errors


Before implementing custom response serializers or object serialization methods, it’s important to consider how to handle any errors that may occur. There are two basic options: passing existing errors along unmodified, to be dealt with at response time; or, wrapping all errors in an Error type specific to your app.


For example, here’s a simple BackendError enum which will be used in later examples:


enum BackendError: Error {
    case network(error: Error) // Capture any underlying Error from the URLSession API
    case dataSerialization(error: Error)
    case jsonSerialization(error: Error)
    case xmlSerialization(error: Error)
    case objectSerialization(reason: String)
}









Creating a Custom Response Serializer


Alamofire provides built-in response serialization for strings, JSON, and property lists, but others can be added in extensions on Alamofire.DataRequest and / or Alamofire.DownloadRequest.


For example, here’s how a response handler using Ono [https://github.com/mattt/Ono] might be implemented:


extension DataRequest {
    static func xmlResponseSerializer() -> DataResponseSerializer<ONOXMLDocument> {
        return DataResponseSerializer { request, response, data, error in
            // Pass through any underlying URLSession error to the .network case.
            guard error == nil else { return .failure(BackendError.network(error: error!)) }

            // Use Alamofire's existing data serializer to extract the data, passing the error as nil, as it has
            // alreaady been handled.
            let result = Request.serializeResponseData(response: response, data: data, error: nil)
            
            guard case let .success(validData) = result else {
                return .failure(BackendError.dataSerialization(error: result.error! as! AFError))
            }

            do {
                let xml = try ONOXMLDocument(data: validData)
                return .success(xml)
            } catch {
                return .failure(BackendError.xmlSerialization(error: error))
            }
        }
    }

    @discardableResult
    func responseXMLDocument(
        queue: DispatchQueue? = nil,
        completionHandler: @escaping (DataResponse<ONOXMLDocument>) -> Void)
        -> Self
    {
        return response(
            queue: queue,
            responseSerializer: DataRequest.xmlResponseSerializer(),
            completionHandler: completionHandler
        )
    }
}









Generic Response Object Serialization


Generics can be used to provide automatic, type-safe response object serialization.


protocol ResponseObjectSerializable {
    init?(response: HTTPURLResponse, representation: Any)
}

extension DataRequest {
    func responseObject<T: ResponseObjectSerializable>(
        queue: DispatchQueue? = nil,
        completionHandler: @escaping (DataResponse<T>) -> Void)
        -> Self
    {
        let responseSerializer = DataResponseSerializer<T> { request, response, data, error in
            guard error == nil else { return .failure(BackendError.network(error: error!)) }

            let jsonResponseSerializer = DataRequest.jsonResponseSerializer(options: .allowFragments)
            let result = jsonResponseSerializer.serializeResponse(request, response, data, nil)
            
            guard case let .success(jsonObject) = result else {
                return .failure(BackendError.jsonSerialization(error: result.error!))
            }

            guard let response = response, let responseObject = T(response: response, representation: jsonObject) else {
                return .failure(BackendError.objectSerialization(reason: "JSON could not be serialized: \(jsonObject)"))
            }

            return .success(responseObject)
        }

        return response(queue: queue, responseSerializer: responseSerializer, completionHandler: completionHandler)
    }
}






struct User: ResponseObjectSerializable, CustomStringConvertible {
    let username: String
    let name: String

    var description: String {
        return "User: { username: \(username), name: \(name) }"
    }

    init?(response: HTTPURLResponse, representation: Any) {
        guard
            let username = response.url?.lastPathComponent,
            let representation = representation as? [String: Any],
            let name = representation["name"] as? String
        else { return nil }

        self.username = username
        self.name = name
    }
}






Alamofire.request("https://example.com/users/mattt").responseObject { (response: DataResponse<User>) in
    debugPrint(response)

    if let user = response.result.value {
        print("User: { username: \(user.username), name: \(user.name) }")
    }
}






The same approach can also be used to handle endpoints that return a representation of a collection of objects:


protocol ResponseCollectionSerializable {
    static func collection(from response: HTTPURLResponse, withRepresentation representation: Any) -> [Self]
}

extension ResponseCollectionSerializable where Self: ResponseObjectSerializable {
    static func collection(from response: HTTPURLResponse, withRepresentation representation: Any) -> [Self] {
        var collection: [Self] = []

        if let representation = representation as? [[String: Any]] {
            for itemRepresentation in representation {
                if let item = Self(response: response, representation: itemRepresentation) {
                    collection.append(item)
                }
            }
        }

        return collection
    }
}






extension DataRequest {
    @discardableResult
    func responseCollection<T: ResponseCollectionSerializable>(
        queue: DispatchQueue? = nil,
        completionHandler: @escaping (DataResponse<[T]>) -> Void) -> Self
    {
        let responseSerializer = DataResponseSerializer<[T]> { request, response, data, error in
            guard error == nil else { return .failure(BackendError.network(error: error!)) }

            let jsonSerializer = DataRequest.jsonResponseSerializer(options: .allowFragments)
            let result = jsonSerializer.serializeResponse(request, response, data, nil)
            
            guard case let .success(jsonObject) = result else {
                return .failure(BackendError.jsonSerialization(error: result.error!))
            }

            guard let response = response else {
                let reason = "Response collection could not be serialized due to nil response."
                return .failure(BackendError.objectSerialization(reason: reason))
            }

            return .success(T.collection(from: response, withRepresentation: jsonObject))
        }

        return response(responseSerializer: responseSerializer, completionHandler: completionHandler)
    }
}






struct User: ResponseObjectSerializable, ResponseCollectionSerializable, CustomStringConvertible {
    let username: String
    let name: String

    var description: String {
        return "User: { username: \(username), name: \(name) }"
    }

    init?(response: HTTPURLResponse, representation: Any) {
        guard
            let username = response.url?.lastPathComponent,
            let representation = representation as? [String: Any],
            let name = representation["name"] as? String
        else { return nil }

        self.username = username
        self.name = name
    }
}






Alamofire.request("https://example.com/users").responseCollection { (response: DataResponse<[User]>) in
    debugPrint(response)

    if let users = response.result.value {
        users.forEach { print("- \($0)") }
    }
}











Security


Using a secure HTTPS connection when communicating with servers and web services is an important step in securing sensitive data. By default, Alamofire will evaluate the certificate chain provided by the server using Apple’s built in validation provided by the Security framework. While this guarantees the certificate chain is valid, it does not prevent man-in-the-middle (MITM) attacks or other potential vulnerabilities. In order to mitigate MITM attacks, applications dealing with sensitive customer data or financial information should use certificate or public key pinning provided by the ServerTrustPolicy.



ServerTrustPolicy


The ServerTrustPolicy enumeration evaluates the server trust generally provided by an URLAuthenticationChallenge when connecting to a server over a secure HTTPS connection.


let serverTrustPolicy = ServerTrustPolicy.pinCertificates(
    certificates: ServerTrustPolicy.certificatesInBundle(),
    validateCertificateChain: true,
    validateHost: true
)






There are many different cases of server trust evaluation giving you complete control over the validation process:



		performDefaultEvaluation: Uses the default server trust evaluation while allowing you to control whether to validate the host provided by the challenge.


		pinCertificates: Uses the pinned certificates to validate the server trust. The server trust is considered valid if one of the pinned certificates match one of the server certificates.


		pinPublicKeys: Uses the pinned public keys to validate the server trust. The server trust is considered valid if one of the pinned public keys match one of the server certificate public keys.


		disableEvaluation: Disables all evaluation which in turn will always consider any server trust as valid.


		customEvaluation: Uses the associated closure to evaluate the validity of the server trust thus giving you complete control over the validation process. Use with caution.








Server Trust Policy Manager


The ServerTrustPolicyManager is responsible for storing an internal mapping of server trust policies to a particular host. This allows Alamofire to evaluate each host against a different server trust policy.


let serverTrustPolicies: [String: ServerTrustPolicy] = [
    "test.example.com": .pinCertificates(
        certificates: ServerTrustPolicy.certificatesInBundle(),
        validateCertificateChain: true,
        validateHost: true
    ),
    "insecure.expired-apis.com": .disableEvaluation
]

let sessionManager = SessionManager(
    serverTrustPolicyManager: ServerTrustPolicyManager(policies: serverTrustPolicies)
)







Make sure to keep a reference to the new SessionManager instance, otherwise your requests will all get cancelled when your sessionManager is deallocated.



These server trust policies will result in the following behavior:



		test.example.com will always use certificate pinning with certificate chain and host validation enabled thus requiring the following criteria to be met to allow the TLS handshake to succeed:
		Certificate chain MUST be valid.


		Certificate chain MUST include one of the pinned certificates.


		Challenge host MUST match the host in the certificate chain’s leaf certificate.








		insecure.expired-apis.com will never evaluate the certificate chain and will always allow the TLS handshake to succeed.


		All other hosts will use the default evaluation provided by Apple.






Subclassing Server Trust Policy Manager


If you find yourself needing more flexible server trust policy matching behavior (i.e. wildcarded domains), then subclass the ServerTrustPolicyManager and override the serverTrustPolicyForHost method with your own custom implementation.


class CustomServerTrustPolicyManager: ServerTrustPolicyManager {
    override func serverTrustPolicy(forHost host: String) -> ServerTrustPolicy? {
        var policy: ServerTrustPolicy?

        // Implement your custom domain matching behavior...

        return policy
    }
}











Validating the Host


The .performDefaultEvaluation, .pinCertificates and .pinPublicKeys server trust policies all take a validateHost parameter. Setting the value to true will cause the server trust evaluation to verify that hostname in the certificate matches the hostname of the challenge. If they do not match, evaluation will fail. A validateHost value of false will still evaluate the full certificate chain, but will not validate the hostname of the leaf certificate.



It is recommended that validateHost always be set to true in production environments.






Validating the Certificate Chain


Pinning certificates and public keys both have the option of validating the certificate chain using the validateCertificateChain parameter. By setting this value to true, the full certificate chain will be evaluated in addition to performing a byte equality check against the pinned certificates or public keys. A value of false will skip the certificate chain validation, but will still perform the byte equality check.


There are several cases where it may make sense to disable certificate chain validation. The most common use cases for disabling validation are self-signed and expired certificates. The evaluation would always fail in both of these cases, but the byte equality check will still ensure you are receiving the certificate you expect from the server.



It is recommended that validateCertificateChain always be set to true in production environments.






App Transport Security


With the addition of App Transport Security (ATS) in iOS 9, it is possible that using a custom ServerTrustPolicyManager with several ServerTrustPolicy objects will have no effect. If you continuously see CFNetwork SSLHandshake failed (-9806) errors, you have probably run into this problem. Apple’s ATS system overrides the entire challenge system unless you configure the ATS settings in your app’s plist to disable enough of it to allow your app to evaluate the server trust.


If you run into this problem (high probability with self-signed certificates), you can work around this issue by adding the following to your Info.plist.


<dict>
    <key>NSAppTransportSecurity</key>
    <dict>
        <key>NSExceptionDomains</key>
        <dict>
            <key>example.com</key>
            <dict>
                <key>NSExceptionAllowsInsecureHTTPLoads</key>
                <true/>
                <key>NSExceptionRequiresForwardSecrecy</key>
                <false/>
                <key>NSIncludesSubdomains</key>
                <true/>
                <!-- Optional: Specify minimum TLS version -->
                <key>NSTemporaryExceptionMinimumTLSVersion</key>
                <string>TLSv1.2</string>
            </dict>
        </dict>
    </dict>
</dict>






Whether you need to set the NSExceptionRequiresForwardSecrecy to NO depends on whether your TLS connection is using an allowed cipher suite. In certain cases, it will need to be set to NO. The NSExceptionAllowsInsecureHTTPLoads MUST be set to YES in order to allow the SessionDelegate to receive challenge callbacks. Once the challenge callbacks are being called, the ServerTrustPolicyManager will take over the server trust evaluation. You may also need to specify the NSTemporaryExceptionMinimumTLSVersion if you’re trying to connect to a host that only supports TLS versions less than 1.2.



It is recommended to always use valid certificates in production environments.








Network Reachability


The NetworkReachabilityManager listens for reachability changes of hosts and addresses for both WWAN and WiFi network interfaces.


let manager = NetworkReachabilityManager(host: "www.apple.com")

manager?.listener = { status in
    print("Network Status Changed: \(status)")
}

manager?.startListening()







Make sure to remember to retain the manager in the above example, or no status changes will be reported.



There are some important things to remember when using network reachability to determine what to do next.



		Do NOT use Reachability to determine if a network request should be sent.
		You should ALWAYS send it.








		When Reachability is restored, use the event to retry failed network requests.
		Even though the network requests may still fail, this is a good moment to retry them.








		The network reachability status can be useful for determining why a network request may have failed.
		If a network request fails, it is more useful to tell the user that the network request failed due to being offline rather than a more technical error, such as “request timed out.”












It is recommended to check out WWDC 2012 Session 706, “Networking Best Practices” [https://developer.apple.com/videos/play/wwdc2012-706/] for more info.










Open Radars


The following radars have some affect on the current implementation of Alamofire.



		rdar://21349340 [http://www.openradar.me/radar?id=5517037090635776] - Compiler throwing warning due to toll-free bridging issue in test case


		rdar://26761490 [http://www.openradar.me/radar?id=5010235949318144] - Swift string interpolation causing memory leak with common usage


		rdar://26870455 - Background URL Session Configurations do not work in the simulator


		rdar://26849668 - Some URLProtocol APIs do not properly handle URLRequest








FAQ



What’s the origin of the name Alamofire?


Alamofire is named after the Alamo Fire flower [https://aggie-horticulture.tamu.edu/wildseed/alamofire.html], a hybrid variant of the Bluebonnet, the official state flower of Texas.





What logic belongs in a Router vs. a Request Adapter?


Simple, static data such as paths, parameters and common headers belong in the Router. Dynamic data such as an Authorization header whose value can changed based on an authentication system belongs in a RequestAdapter.


The reason the dynamic data MUST be placed into the RequestAdapter is to support retry operations. When a Request is retried, the original request is not rebuilt meaning the Router will not be called again. The RequestAdapter is called again allowing the dynamic data to be updated on the original request before retrying the Request.









Credits


Alamofire is owned and maintained by the Alamofire Software Foundation [http://alamofire.org]. You can follow them on Twitter at @AlamofireSF [https://twitter.com/AlamofireSF] for project updates and releases.



Security Disclosure


If you believe you have identified a security vulnerability with Alamofire, you should report it as soon as possible via email to security@alamofire.org. Please do not post it to a public issue tracker.







Donations


The ASF [https://github.com/Alamofire/Foundation#members] is looking to raise money to officially register as a federal non-profit organization. Registering will allow us members to gain some legal protections and also allow us to put donations to use, tax free. Donating to the ASF will enable us to:



		Pay our legal fees to register as a federal non-profit organization


		Pay our yearly legal fees to keep the non-profit in good status


		Pay for our mail servers to help us stay on top of all questions and security issues


		Potentially fund test servers to make it easier for us to test the edge cases


		Potentially fund developers to work on one of our projects full-time





The community adoption of the ASF libraries has been amazing. We are greatly humbled by your enthusiam around the projects, and want to continue to do everything we can to move the needle forward. With your continued support, the ASF will be able to improve its reach and also provide better legal safety for the core members. If you use any of our libraries for work, see if your employers would be interested in donating. Our initial goal is to raise $1000 to get all our legal ducks in a row and kickstart this campaign. Any amount you can donate today to help us reach our goal would be greatly appreciated.


[image: Click here to lend your support to: Alamofire Software Foundation and make a donation at pledgie.com !]





License


Alamofire is released under the MIT license. See LICENSE for details.






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/Carthage/Checkouts/Alamofire/CONTRIBUTING.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  
Contributing Guidelines


This document contains information and guidelines about contributing to this project.
Please read it before you start participating.


Topics



		Asking Questions


		Reporting Security Issues


		Reporting Issues


		Developers Certificate of Origin


		Code of Conduct






Asking Questions


We don’t use GitHub as a support forum.
For any usage questions that are not specific to the project itself,
please ask on Stack Overflow [https://stackoverflow.com] instead.
By doing so, you’ll be more likely to quickly solve your problem,
and you’ll allow anyone else with the same question to find the answer.
This also allows maintainers to focus on improving the project for others.





Reporting Security Issues


The Alamofire Software Foundation takes security seriously.
If you discover a security issue, please bring it to our attention right away!


Please DO NOT file a public issue,
instead send your report privately to security@alamofire.org.
This will help ensure that any vulnerabilities that are found
can be disclosed responsibly [http://en.wikipedia.org/wiki/Responsible_disclosure]
to any affected parties.





Reporting Other Issues


A great way to contribute to the project
is to send a detailed issue when you encounter an problem.
We always appreciate a well-written, thorough bug report.


Check that the project issues database
doesn’t already include that problem or suggestion before submitting an issue.
If you find a match, add a quick “+1” or “I have this problem too.”
Doing this helps prioritize the most common problems and requests.


When reporting issues, please include the following:



		The version of Xcode you’re using


		The version of iOS or OS X you’re targeting


		The full output of any stack trace or compiler error


		A code snippet that reproduces the described behavior, if applicable


		Any other details that would be useful in understanding the problem





This information will help us review and fix your issue faster.





Developer’s Certificate of Origin 1.1


By making a contribution to this project, I certify that:



		(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or


		(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or


		(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.


		(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.








Code of Conduct


The Code of Conduct governs how we behave in public or in private
whenever the project will be judged by our actions.
We expect it to be honored by everyone who contributes to this project.


See CONDUCT.md [https://github.com/Alamofire/Foundation/blob/master/CONDUCT.md] for details.




Some of the ideas and wording for the statements above were based on work by the Docker [https://github.com/docker/docker/blob/master/CONTRIBUTING.md] and Linux [http://elinux.org/Developer_Certificate_Of_Origin] communities. We commend them for their efforts to facilitate collaboration in their projects.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/README.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  [image: Waterwheel - Drupal SDK]


[image: Drupal version]
[image: CocoaPods]
[image: CocoaPods]
[image: Carthage compatible]
[image: Swift version]



Waterwheel Swift SDK for Drupal



Waterwheel makes using Drupal as a backend with iOS, macOS, tvOS, or watchOS enjoyable by combining the most used features of Drupal’s API’s in one SDK. - Formerly known as Drupal iOS SDK.





    Features •
    Configuration •
    Usage •
    Installation •
    Requirements



-------




Features in 4.x



		[x] Session management


		[x] Basic Auth


		[x] Cookie Auth


		[x] Entity CRUD


		[ ] True entities


		[ ] Local caching


		[x] LoginViewController


		[ ] SignupViewController


		[x] AuthButton


		[x] Views integration into Table Views





Back to Top





Configuration



		import waterwheel


		(Optional) If you’re not using HTTPS you will have to enable the NSAppTransportSecurity [http://stackoverflow.com/questions/31254725/transport-security-has-blocked-a-cleartext-http]








Usage


The code below will give you access to the baseline of features for communicating to a Drupal site.


// Sets the URL to your Drupal site.
waterwheel.setDrupalURL("http://waterwheel-swift.com")






If is important to note that waterwheel makes heavy uses of Closures [https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html], which allows us to pass functions as returns, or store them in variables.



Login


The code below will set up Basic Authentication for each API call.


// Sets HTTPS Basic Authentication Credentials.
waterwheel.setBasicAuthUsernameAndPassword("test", password: "test2");






If you do not want to use Basic Auth, and instead use a cookie, waterwheel provides an authentication method for doing so.
Sessions are handled for you, and will restore state upon closing an app and reopening it.


waterwheel.login(usernameField.text!, password: passwordField.text!) { (success, response, json, error) in
    if (success) {
        print("logged in")
    } else {
        print("failed to login")
    }
}






Waterwheel  provides a waterwheelAuthButton to place anywhere in your app. The code below is iOS specific because of its dependence on UIKit.


let loginButton = waterwheelAuthButton()
// When we press Login, lets show our Login view controller.
loginButton.didPressLogin = {
  waterwheel.login(usernameField.text!, password: passwordField.text!) { (success, response, json, error) in
      if (success) {
          print("successful login")
      } else {
          print("failed to login")
      }
  }
}

loginButton.didPressLogout = { (success, error) in
    print("logged out")
}
self.view.addSubview(loginButton)






Taking this one step further, waterwheel also provides a waterwheelLoginViewController. You can subclass this controller and overwrite if needed. For our purposes we will use the default implementation.


First, we build our waterwheelLoginViewController and set our loginRequestCompleted and logoutRequestCompleted closures:


// Lets build our default waterwheelLoginViewController.
let vc = waterwheelLoginViewController()

//Lets add our closure that will be run when the request is completed.
vc.loginRequestCompleted = { (success, error) in
    if (success) {
        // Do something related to a successful login
        print("successful login")
        self.dismissViewControllerAnimated(true, completion: nil)
    } else {
        print (error)
    }
}
vc.logoutRequestCompleted = { (success, error) in
    if (success) {
        print("successful logout")
        // Do something related to a successful logout
        self.dismissViewControllerAnimated(true, completion: nil)
    } else {
        print (error)
    }
}






Once that is done we can now tell our waterwheelAuthButton what to do when someone presses Login. Of course this can all be handled manually in your own implementation, but for our purposes, were just using what waterwheel provides.


Here we instantiate a new waterwheelAuthButton and tell it what we want to happen when someone presses login, and logout.


let loginButton = waterwheelAuthButton()
// When we press Login, lets show our Login view controller.
loginButton.didPressLogin = {
    // Lets Present our Login View Controller since this closure is for the loginButton press
    self.presentViewController(vc, animated: true, completion: nil)
}

loginButton.didPressLogout = { (success, error) in
    print("logged out")
}
self.view.addSubview(loginButton)






Because these two Views know whether you are logged in or out, they will always show the correct state of buttons(Login, or Logout) and perform the approriate actions. The UI is up to you, but at its default you get username, password, submit, and cancel button. With all that said, you can ingore these classes and use the methods that waterwheel provides and deeply integrate into your own UI.





Node Methods



Get


// Get Node 36
waterwheel.nodeGet(nodeId: "36", params: nil, completionHandler: { (success, response, json, error) in
  print(response)
})









Create/post


//build our node body
let body = [
    "type": [
        [
            "target_id": "article"
        ]
    ],
    "title": [
        [
            "value": "Hello World"
        ]
    ],
    "body": [
        [
            "value": "How are you?"
        ]
    ]
]

// Create a new node.
waterwheel.entityPost(entityType: .Node, params: body) { (success, response, json, error) in
    if (success) {
        print(response)
    } else {
        print(error)
    }
}









Update/Put/PATCH


// Update an existing node
waterwheel.nodePatch(nodeId: "36", node: body) { (success, response, json, error) in
    print(response);
}









Delete


// Delete an existing node
waterwheel.nodeDelete(nodeId: "36", params: nil, completionHandler: { (success, response, json, error) in
    print(response)
})













Entity Requests


Since Node is rather specific, Watherweel provides entity methods as well for all entityTypes



Entity Get


waterwheel.entityGet(entityType: .Node, entityId: "36", params: params, completionHandler: completionHandler)









Entity Post


waterwheel.sharedInstance.entityPost(entityType: .Node, params: node, completionHandler: completionHandler)









Entity Patch


waterwheel.entityPatch(entityType: .Node, entityId: "36", params: nodeObject, completionHandler: completionHandler)







Entity Delete


waterwheel.entityDelete(entityType: .Node, entityId: entityId, params: params, completionHandler: completionHandler)













Installation


Waterwheel offers two installations paths. Pick your poison!





Installation



CocoaPods


If you’re using CocoaPods, just add this line to your Podfile:


pod 'waterwheel'






Install by running this command in your terminal:


pod install






Then import the library in all files where you use it:


import waterwheel









Carthage


Just add to your Cartfile:


github "acquia/waterwheel-swift"






Run carthage update to build the framework and drag the built waterwheel.framework into your Xcode project.







Communication



		If you need help, use Stack Overflow [http://stackoverflow.com/questions/tagged/waterwheel-swift]. (Tag ‘waterwheel-swift’)


		If you found a bug, open an issue.


		If you have a feature request, open an issue.


		If you want to contribute, submit a pull request.





Back to Top





Drupal Compatibility



The framework is tracking Drupal 8. As new features come out in 8, they will be added ASAP. Since Drupal 7 and Drupal 8 are completely different in terms of API’s, you will need to use the correct version of waterwheel depending on your Drupal version.







Requirements



		iOS 8.0+ / Mac OS X 10.9+ / tvOS 9.0+ / watchOS 2.0+


		Xcode 7.3+





| waterwheel version | Drupal version   |                                   Notes                                   |
|:——————–:|:—————————:|:—————————-:|:————————————————————————-:|
|          4.x [https://github.com/kylebrowning/waterwheel-swift/tree/4.x]         |            Drupal 8 (Swift)            |
|          3.x [https://github.com/kylebrowning/waterwheel-swift/tree/3.x]         |            Drupal 8 (Obj-C)                   |  |
|          2.x [https://github.com/kylebrowning/waterwheel-swift/tree/2.x]         |            Drupal 6-7 (Obj-C)              |        Requires Services [http://drupal.org/project/services] module                                                                    |


Back to Top






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/CHANGELOG.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  #Change Log
All notable changes to this project will be documented in this file. starting with version 4.2.5





4.2.8 [https://github.com/Acquia/waterwheel-swift/releases/tag/4.2.8] (08/26/2016)


Released on Friday, August 26, 2016. All issues associated with this milestone can be found using this filter [https://github.com/Acquia/waterwheel-swift/issues?q=milestone%3A4.2.8+is%3Aclosed].



Added



		Provide ViewsTableViewController


		Implemented by kylebrowning in #141 [https://github.com/acquia/waterwheel-swift/issues/141].








Fixed



		waterwheelLoginViewController has no cancel button/action


		Implemented by kylebrowning in #143 [https://github.com/acquia/waterwheel-swift/issues/143].










4.2.7 [https://github.com/Acquia/waterwheel-swift/releases/tag/4.2.7] (08/17/2016)


Released on Wednesday, August 17, 2016. All issues associated with this milestone can be found using this filter [https://github.com/Acquia/waterwheel-swift/issues?q=milestone%3A4.2.7+is%3Aclosed].



Changed



		Rename ViewExtension because it can be confused with a Drupal View


		Implemented by kylebrowning in #140 [https://github.com/acquia/waterwheel-swift/issues/140].










4.2.6 [https://github.com/Acquia/waterwheel-swift/releases/tag/4.2.6] (08/16/2016)


Released on Tuesday, August 16, 2016. All issues associated with this milestone can be found using this filter [https://github.com/Acquia/waterwheel-swift/issues?q=milestone%3A4.2.6+is%3Aclosed].



Updated



		100% doc coverage for waterwheelAuthButton


		Implemented by kylebrowning in #138 [https://github.com/acquia/waterwheel-swift/issues/138].








Changed



		Move Title color from Auth button out of setup


		Implemented by kylebrowning in #139 [https://github.com/acquia/waterwheel-swift/issues/139].










4.2.5 [https://github.com/Acquia/waterwheel-swift/releases/tag/4.2.5] (08/16/2016)


Released on Tuesday, August 16, 2016. All issues associated with this milestone can be found using this filter [https://github.com/Acquia/waterwheel-swift/issues?q=milestone%3A4.2.5+is%3Aclosed].



Fixed



		properties on AuthButton are protected


		Implemented by kylebrowning in #137 [https://github.com/acquia/waterwheel-swift/issues/137].











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/Carthage/Checkouts/Alamofire/CHANGELOG.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  
Change Log


All notable changes to this project will be documented in this file.
Alamofire adheres to Semantic Versioning [http://semver.org/].



4.x Releases



		4.0.x Releases - 4.0.0


		4.0.0 Betas - 4.0.0-beta.1 | 4.0.0-beta.2








3.x Releases



		3.5.x Releases - 3.5.0


		3.4.x Releases - 3.4.0 | 3.4.1 | 3.4.2


		3.3.x Releases - 3.3.0 | 3.3.1


		3.2.x Releases - 3.2.0 | 3.2.1


		3.1.x Releases - 3.1.0 | 3.1.1 | 3.1.2 | 3.1.3 | 3.1.4 | 3.1.5


		3.0.x Releases - 3.0.0 | 3.0.1


		3.0.0 Betas - 3.0.0-beta.1 | 3.0.0-beta.2 | 3.0.0-beta.3








2.x Releases



		2.0.x Releases - 2.0.0 | 2.0.1 | 2.0.2


		2.0.0 Betas - 2.0.0-beta.1 | 2.0.0-beta.2 | 2.0.0-beta.3 | 2.0.0-beta.4








1.x Releases



		1.3.x Releases - 1.3.0 | 1.3.1


		1.2.x Releases - 1.2.0 | 1.2.1 | 1.2.2 | 1.2.3


		1.1.x Releases - 1.1.0 | 1.1.1 | 1.1.2 | 1.1.3 | 1.1.4 | 1.1.5


		1.0.x Releases - 1.0.0 | 1.0.1










4.0.0 [https://github.com/Alamofire/Alamofire/releases/tag/4.0.0]


Released on 2016-09-11. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A4.0.0].



Added



		Internal DispatchQueue extension set of convenience properties and methods.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1450 [https://github.com/Alamofire/Alamofire/pull/1450].








		RequestAdapter and RequestRetrier protocols allowing requests to be retried.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1450 [https://github.com/Alamofire/Alamofire/pull/1450].








		RequestAdapter tests on all testable SessionManager request APIs.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1450 [https://github.com/Alamofire/Alamofire/pull/1450].








		Added an Adapting and Retrying Requests section to the README.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1450 [https://github.com/Alamofire/Alamofire/pull/1450].








		DataRequest, DownloadRequest, UploadRequest and StreamRequest subclasses.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1455 [https://github.com/Alamofire/Alamofire/pull/1455].








		Top-level APIs for creating StreamRequest instances.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1455 [https://github.com/Alamofire/Alamofire/pull/1455].








		Extra responseToSelector overrides for stream delegate APIs.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1455 [https://github.com/Alamofire/Alamofire/pull/1455].








		A new syncResult extension to DispatchQueue to simplify thread-safe locking.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1455 [https://github.com/Alamofire/Alamofire/pull/1455].








		Two serialization failure reasons to support download response serializers.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1457 [https://github.com/Alamofire/Alamofire/pull/1457].








		Download response serialization tests for all serializer types.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1457 [https://github.com/Alamofire/Alamofire/pull/1457].








		The dataFileNil and dataFileReadFailed cases to ResponseValidationFailureReason.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1461 [https://github.com/Alamofire/Alamofire/pull/1461].








		The isWildcard property to MIMEType struct for convenience.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1461 [https://github.com/Alamofire/Alamofire/pull/1461].








		Missing CustomDebugStringCovertible conformance to DownloadResponse.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1462 [https://github.com/Alamofire/Alamofire/pull/1462].








		URL variants to the FileManager extension in the test suite.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1462 [https://github.com/Alamofire/Alamofire/pull/1462].








		DownloadOptions option set to make moving files more robust.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1462 [https://github.com/Alamofire/Alamofire/pull/1462].








		Tests validating success and failure scenarios for DownloadOptions.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1462 [https://github.com/Alamofire/Alamofire/pull/1462].








		Parameter encoding failure docstrings and refactored reasons to be consistent.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1465 [https://github.com/Alamofire/Alamofire/pull/1465].








		Safeguards to url parameter encoding when extracting the url request’s url.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1465 [https://github.com/Alamofire/Alamofire/pull/1465].








		The new URLSessionTaskMetrics to all Response types.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1492 [https://github.com/Alamofire/Alamofire/pull/1492].








		The Alamofire 4.0 Migration Guide to the README.
		Added by Christian Noon [https://github.com/cnoon].








		HTTPHeaders typealias for top-level API convenience.
		Added by Christian Noon [https://github.com/cnoon].








		Complete safeguards to URLStringConvertible, URLRequestConvertible and RequestAdapter.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1505 [https://github.com/Alamofire/Alamofire/pull/1505].








		Tests around invalidURL error cases for Request creation and adaptation.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1505 [https://github.com/Alamofire/Alamofire/pull/1505].














Updated



		The authorizationHeader static method over to returning optional tuple.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1455 [https://github.com/Alamofire/Alamofire/pull/1455].








		SessionManager queues to each have a unique name using a UUID suffix.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1455 [https://github.com/Alamofire/Alamofire/pull/1455].








		The progress tracking system across all Request subclasses to improve accuracy.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1455 [https://github.com/Alamofire/Alamofire/pull/1455].








		BaseTestCase to delete contents of common directories at the start of each test.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1457 [https://github.com/Alamofire/Alamofire/pull/1457].








		Response handler extensions by moving them into DataRequest and added equivalents
for DownloadRequest.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1457 [https://github.com/Alamofire/Alamofire/pull/1457].








		The response serializer types to use the Protocol suffix.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1457 [https://github.com/Alamofire/Alamofire/pull/1457].








		Validation typealias to include response data in a DataRequest type.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1461 [https://github.com/Alamofire/Alamofire/pull/1461].








		Validation typealias to include temporary and destination URLs in a DownloadRequest type.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1461 [https://github.com/Alamofire/Alamofire/pull/1461].








		SessionManager APIs to all leverage TaskConvertible conformance.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1461 [https://github.com/Alamofire/Alamofire/pull/1461].








		DownloadFileDestination closures to be optional on top-level DownloadRequest APIs.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1462 [https://github.com/Alamofire/Alamofire/pull/1462].








		The request and download APIs now default to .get method and upload defaults to .post.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1462 [https://github.com/Alamofire/Alamofire/pull/1462].








		The ParameterEncoding encode API to throw instead of returning tuple.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1465 [https://github.com/Alamofire/Alamofire/pull/1465].








		The TaskDelegate to only store the url session task error if error is nil.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1465 [https://github.com/Alamofire/Alamofire/pull/1465].








		ParameterEncoding enum by switching to a protocol backed by url, json and plist structs.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1465 [https://github.com/Alamofire/Alamofire/pull/1465].








		Updated RequestRetrier completion to be escaping.
		Updated by Aron Cedercrantz [https://github.com/rastersize] in Pull Request
#1489 [https://github.com/Alamofire/Alamofire/pull/1489].








		Code signing to automatic with no team on framework, test and app targets.
		Updated by Christian Noon [https://github.com/cnoon].








		README for Swift 3 and Alamofire 4 along with reorganization.
		Updated by Christian Noon [https://github.com/cnoon].








		README with improved Error examples as well as typo and whitespace fixes.
		Updated by Jon Shier [https://github.com/jshier] in Pull Request
#1504 [https://github.com/Alamofire/Alamofire/pull/1504].








		Request task property is now optional allowing errors to propagate through.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1505 [https://github.com/Alamofire/Alamofire/pull/1505].








		The Travis-CI device list in the yaml file.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1505 [https://github.com/Alamofire/Alamofire/pull/1505].








		The top-level APIs by removing external resource parameter name.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1505 [https://github.com/Alamofire/Alamofire/pull/1505].








		The URLStringCovertible by renaming to URLConvertible and removed protocol property.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1505 [https://github.com/Alamofire/Alamofire/pull/1505].








		The README and migration guide with the URLConvertible and top-level API changes.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1505 [https://github.com/Alamofire/Alamofire/pull/1505].














Removed



		Unnecessary public ACL declarations on AFError extensions.
		Removed by Christian Noon [https://github.com/cnoon].








		URLStringConvertible conformance on URLRequest.
		Removed by Christian Noon [https://github.com/cnoon] in Pull Request
#1491 [https://github.com/Alamofire/Alamofire/pull/1491].








		Removed downloadProgress and uploadProgress Int64 variants.
		Removed by Christian Noon [https://github.com/cnoon] in regards to Issue
#1467 [https://github.com/Alamofire/Alamofire/issues/1467] reported by
thebluepotato [https://github.com/thebluepotato].








		Duplicated change log message in the migration guide.
		Removed by Justin Jia [https://github.com/JustinJiaDev] in Pull Request
#1503 [https://github.com/Alamofire/Alamofire/pull/1503].








		Code coverage generation by default to improve test suite stability.
		Removed by Christian Noon [https://github.com/cnoon].














Fixed



		Fixed URLEncoding issue around NSNumber parameter encoding.
		Fixed by Christian Noon [https://github.com/cnoon] in regards to Issue
#1458 [https://github.com/Alamofire/Alamofire/issues/1458] reported by
Dhanush Balachandran [https://github.com/dhanushram].








		Issue where MultipartFormData temp directory creation needed to be done serially.
		Fixed by Christian Noon [https://github.com/cnoon] in regards to Issue
#1333 [https://github.com/Alamofire/Alamofire/issues/1333] reported by
Fernando Mazzon [https://github.com/fer662].








		Issue in resume data tests where request was being cancelled multiple times.
		Fixed by Christian Noon [https://github.com/cnoon].


















4.0.0-beta.2 [https://github.com/Alamofire/Alamofire/releases/tag/4.0.0-beta.2]


Released on 2016-08-29. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A4.0.0-beta.2].



Fixed



		Build issue with Manager class due to cherry picked change that merged incorrectly.
		Fixed by Christian Noon [https://github.com/cnoon] in regards to Issue
#1438 [https://github.com/Alamofire/Alamofire/pull/1438].
















4.0.0-beta.1 [https://github.com/Alamofire/Alamofire/releases/tag/4.0.0-beta.1]


Released on 2016-08-28. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A4.0.0-beta.1].



Added



		discardableResult annotations to all top-level Request APIs.
		Added by Christian Noon [https://github.com/cnoon].














Updated



		All source, test and example logic as well as project settings to compile against
the Xcode 8 beta releases.
		Updated by Kevin Harwood [https://github.com/kcharwood],
Jon Shier [https://github.com/jshier] and
Christian Noon [https://github.com/cnoon].








		Deployment targets to iOS 9.0, macOS 10.11, tvOS 9.0 and watchOS 2.0.
		Updated by Christian Noon [https://github.com/cnoon].








		Notifications to use nested structs inside Notification.Name namespace.
		Updated by Christian Noon [https://github.com/cnoon].








		The Manager class to SessionManager to be more descriptive.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1385 [https://github.com/Alamofire/Alamofire/pull/1385].








		The SessionDelegate, TaskDelegate and subclasses by pulling them into the global namespace.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1385 [https://github.com/Alamofire/Alamofire/pull/1385].








		All the Core APIs and documentation to match Swift 3 API design guidelines.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1385 [https://github.com/Alamofire/Alamofire/pull/1385].








		The SessionDelegate to store Request instances internally to prepare for retry logic.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1391 [https://github.com/Alamofire/Alamofire/pull/1391].








		The podspec to 4.0.0-beta.1 and bumped the deployment targets.
		Updated by Jon Shier [https://github.com/jshier] in Pull Request
#1401 [https://github.com/Alamofire/Alamofire/pull/1401].








		The parameter order of custom URLRequest initializer to match other APIs.
		Updated by Christian Noon [https://github.com/cnoon].








		The travis yaml file for Xcode 8.
		Updated by Christian Noon [https://github.com/cnoon].








		The Error enum to AFError which now conforms to the new Error protocol.
		Updated by Jon Shier [https://github.com/jshier] in Pull Request
#1419 [https://github.com/Alamofire/Alamofire/pull/1419].














Fixed



		Typo in a parameter name in the MultipartFormData Swift 3 API refactor.
		Fixed by Joshua Hudson [https://github.com/jhudsonWA] in Pull Request
#1395 [https://github.com/Alamofire/Alamofire/pull/1395].














Upgrade Notes


This release requires Xcode 8.0 beta 6+ because it has been completely refactored to compile against Swift 3.0. Any older versions of Xcode will NOT COMPILE.


This release is the start of the Alamofire 4.0.0 beta releases. We still have quite a few large changes we’re trying to squeeze in before the Xcode 8 GM drops, so the APIs will continue to change over the next few weeks. Please keep in mind that each beta will likely bring new APIs and also refactor others. The betas WILL NOT follow semantic versioning. We’ll most likely conform to semantic versioning once we start releasing the RCs unless we run into a major unforeseen issue.


We’d really appreciate everyone trying out the betas and letting us know if you find issues. We want to address every possible issue prior to the official Alamofire 4.0.0 release.







3.5.0 [https://github.com/Alamofire/Alamofire/releases/tag/3.5.0]


Released on 2016-09-07. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.5.0].



Updated



		The User-Agent header generation formatting and also added docs and tests.
		Updated by Jon Shier [https://github.com/jshier] in Pull Request
#1456 [https://github.com/Alamofire/Alamofire/pull/1456] in regards to Issue
#1452 [https://github.com/Alamofire/Alamofire/issues/1452].








		All source, test and example logic as well as project settings to compile against
Xcode 7 and 8 against Swift 2.2 or 2.3 respectively.
		Updated by Kevin Harwood [https://github.com/kcharwood],
Jon Shier [https://github.com/jshier] and
Christian Noon [https://github.com/cnoon].








		The Travis CI yaml file to support both Xcode 7.3 and 8 simultaneously.
		Updated by Christian Noon [https://github.com/cnoon].














Fixed



		A TLS evaluation test that could fail with a different error when behind a proxy.
		Fixed by Christian Noon [https://github.com/cnoon].


















3.4.2 [https://github.com/Alamofire/Alamofire/releases/tag/3.4.2]


Released on 2016-08-28. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.4.2].



Added



		Added Cleanup Whitespace target to remove excess whitespace from Swift files.
		Added by Christian Noon [https://github.com/cnoon].














Updated



		All TLS evaluation tests from disig.sk to badssl.com to be more reliant and robust.
		Updated by Christian Noon [https://github.com/cnoon].








		Internal URLRequest method to maintain mutable variant data on an NSURLRequest passed
into the top-level APIs.
		Updated by Greedwolf DSS [https://github.com/passchaos] in Pull Request
#1330 [https://github.com/Alamofire/Alamofire/pull/1330].








		The User-Agent header to include version and build numbers.
		Updated by Sergey Demchenko [https://github.com/antrix1989] in Pull Request
#1420 [https://github.com/Alamofire/Alamofire/pull/1420].














Removed



		All excess whitespace from Swift files using the Cleanup Whitespace target.
		Removed by Christian Noon [https://github.com/cnoon].














Fixed



		Request debug description tests to no longer require parameters in a specific order.
		Fixed by Marius Serban [https://github.com/marius-serban] in Pull Request
#1318 [https://github.com/Alamofire/Alamofire/pull/1318].








		Small ACL issue in code sample of the Handling Errors section of the README.
		Fixed by Adrian Brink [https://github.com/adrianbrink] in Pull Request
#1315 [https://github.com/Alamofire/Alamofire/pull/1315].
















3.4.1 [https://github.com/Alamofire/Alamofire/releases/tag/3.4.1]


Released on 2016-06-12. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.4.1].



Added



		Rdar 26761490 to the list of rdars affecting Alamofire.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1262 [https://github.com/Alamofire/Alamofire/pull/1262].








		A new debugDescription test for a MultipartFormData Request with duplicate headers.
		Added by Christian Noon [https://github.com/cnoon] in regards to Issue
#1303 [https://github.com/Alamofire/Alamofire/issues/1303].














Updated



		CocoaPod installation instructions in README to be compatible with 1.x.
		Updated by Luis Ferro [https://github.com/lferro9000] in Pull Request
#1288 [https://github.com/Alamofire/Alamofire/pull/1288].








		The README to reflect the best error practices in response serializers.
		Updated by Jon Shier [https://github.com/jshier] in Pull Request
#1273 [https://github.com/Alamofire/Alamofire/pull/1273].








		The generation of the User-Agent header to use non-localized sources.
		Updated by Jon Shier [https://github.com/jshier] in Pull Request
#1292 [https://github.com/Alamofire/Alamofire/pull/1292] in regards to Issue
#1269 [https://github.com/Alamofire/Alamofire/pull/1269].








		The Generic Response Object Serialization section of the README to use protocol extension.
		Updated by Raphael Oliveira [https://github.com/raphaeloliveira] in Pull Request
#1257 [https://github.com/Alamofire/Alamofire/pull/1257].








		Reachability by removing explicit IPv6 logic since OS handles this automatically.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1308 [https://github.com/Alamofire/Alamofire/pull/1308] in regards to Issue
#1228 [https://github.com/Alamofire/Alamofire/pull/1228].








		Host manager reachability test to use different hostname to improve test reliability.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1308 [https://github.com/Alamofire/Alamofire/pull/1308].














Removed



		ReleaseTest configuration and updated Travis-CI yaml file to enable testability directly.
		Removed by Christian Noon [https://github.com/cnoon].














Fixed



		Memory leak in Timeline description and debugDescription due to string interpolation.
		Fixed by Christian Noon [https://github.com/cnoon] in Pull Request
#1262 [https://github.com/Alamofire/Alamofire/issues/1262] in regards to Issue
#1232 [https://github.com/Alamofire/Alamofire/issues/1232].
















3.4.0 [https://github.com/Alamofire/Alamofire/releases/tag/3.4.0]


Released on 2016-05-08. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.4.0].



Added



		Status code and content type values into validation NSError userInfo dictionaries.
		Added by Cédric Luthi [https://github.com/0xced] in Pull Request
#1166 [https://github.com/Alamofire/Alamofire/pull/1166].








		New authorizationHeader API to generate base64 encoded authorization header.
		Added by Cédric Luthi [https://github.com/0xced] in Pull Request
#1187 [https://github.com/Alamofire/Alamofire/pull/1187].














Updated



		URLProtocol tests to demonstrate using NSURLProtocol with NSURLSession.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Issue
#1160 [https://github.com/Alamofire/Alamofire/issues/1160].








		The SesionDelegate to no longer be final to allow subclassing.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1172 [https://github.com/Alamofire/Alamofire/issues/1172] in regards to Issue
#1145 [https://github.com/Alamofire/Alamofire/issues/1145].








		The SessionDelegate subscript public to allow full control when subclassing.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#1172 [https://github.com/Alamofire/Alamofire/issues/1172].








		The Response Serialization section of the README to include validation examples.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Issue
#1213 [https://github.com/Alamofire/Alamofire/issues/1213].








		The delegate guard in the Manager initializer in front of property assignment.
		Updated by Broccoliii [https://github.com/broccolii] in Pull Request
#1226 [https://github.com/Alamofire/Alamofire/issues/1226].








		Header example in the README to use Accept header instead of Content-Type.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Pull Request
#1229 [https://github.com/Alamofire/Alamofire/issues/1229].














Deprecated



		The errorWithCode APIs and updated NSURLError* domains to NSURLErrorDomain.
		Deprecated by Cédric Luthi [https://github.com/0xced] in Pull Request
#1166 [https://github.com/Alamofire/Alamofire/pull/1166].














Fixed



		Issue where Requests with invalid credentials were not terminating with 401 status code.
		Fixed by Cédric Luthi [https://github.com/0xced] in Pull Request
#1164 [https://github.com/Alamofire/Alamofire/pull/1164] in regards to Issue
#1159 [https://github.com/Alamofire/Alamofire/issues/1159].








		Issue in URLProtocol test where config headers are not passed prior to iOS 9.0.
		Fixed by Christian Noon [https://github.com/cnoon].








		Issue where Request cURLRepresentation method was not coalescing duplicate headers.
		Fixed by Chris Richards [https://github.com/chrisrichards] in Pull Request
#1186 [https://github.com/Alamofire/Alamofire/pull/1186] in regards to Issue
#1184 [https://github.com/Alamofire/Alamofire/issues/1184].








		Issue where incorrect dash in License file was breaking markdown parsing.
		Fixed by Gemma Barlow [https://github.com/gemmakbarlow] in Pull Request
#1218 [https://github.com/Alamofire/Alamofire/issues/1218].








		Issue where internal quotes were not escaped correctly in cURL output.
		Fixed by Christian Noon [https://github.com/cnoon].


















3.3.1 [https://github.com/Alamofire/Alamofire/releases/tag/3.3.1]


Released on 2016-04-06. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.3.1].



Added



		Tests for the SessionDelegate redirect with completion override closure.
		Added by Kevin Harwood [https://github.com/kcharwood] in Pull Request
#1141 [https://github.com/Alamofire/Alamofire/issues/1141].








		Tests for all the SessionDelegate override closures.
		Added by Christian Noon [https://github.com/cnoon].














Updated



		The authentication test cases to clear out all cookies to help stabilize Travis-CI.
		Updated by Christian Noon [https://github.com/cnoon].








		The cache test check for no store header to use availability checks.
		Updated by Christian Noon [https://github.com/cnoon].














Fixed



		The respondsToSelector check for the new HTTP redirect closure with completion.
		Fixed by Kevin Harwood [https://github.com/kcharwood] in Pull Request
#1141 [https://github.com/Alamofire/Alamofire/issues/1141] in regards to Issue
#1140 [https://github.com/Alamofire/Alamofire/issues/1140].








		Issue where the challenge and response SessionDelegate override closures were not called.
		Fixed by Christian Noon [https://github.com/cnoon].








		Typo in the Travis YAML file that was causing all tests to always fail on iOS 9.1.
		Fixed by Christian Noon [https://github.com/cnoon].








		Race condition in the cache tests that was causing random failures on Travis-CI.
		Fixed by Christian Noon [https://github.com/cnoon].
















3.3.0 [https://github.com/Alamofire/Alamofire/releases/tag/3.3.0]


Released on 2016-03-23. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.3.0].



Added



		Added override closures for all SessionDelegate APIs with completion handlers.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1099 [https://github.com/Alamofire/Alamofire/pull/1099].














Updated



		The User-Agent header implementation to use more aggresive type-safety checks.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Issue
#1100 [https://github.com/Alamofire/Alamofire/issues/1100].








		All shared response serializers to accept a custom queue for execution.
		Updated by Luca Torella [https://github.com/lucatorella] in Pull Request
#1112 [https://github.com/Alamofire/Alamofire/pull/1112].








		The network reachability manager to use IPv4 on iOS 8.x and OSX 10.9.x.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Issue
#1086 [https://github.com/Alamofire/Alamofire/issues/1086].








		All source, test and example code to compile against Swift 2.2.
		Updated by James Barrow [https://github.com/Baza207] and Dominik Hadl [https://github.com/nickskull] in Pull Requests
#1030 [https://github.com/Alamofire/Alamofire/pull/1030] and
#1128 [https://github.com/Alamofire/Alamofire/pull/1128].








		The Travis CI YAML file to use Xcode 7.3 and also updated matrix targets.
		Updated by Christian Noon [https://github.com/cnoon].














Fixed



		Issue in JSON response serialization test case where the wrong serializer was being tested.
		Fixed by Gregory J.H. Rho [https://github.com/topchul] in Pull Request
#1108 [https://github.com/Alamofire/Alamofire/pull/1108].








		Issue where multipart form data encoding was unnecessarily scheduling input and output
streams with the current runloop.
		Fixed by Brian King [https://github.com/KingOfBrian] in Pull Request
#1121 [https://github.com/Alamofire/Alamofire/pull/1121].














Upgrade Notes


This release requires Xcode 7.3+ otherwise the Swift 2.2 changes will NOT COMPILE. There are several reasons why this was deployed as a MINOR and not MAJOR release. First off, the public API changes of this release are fully backwards compatible. There are no breaking API changes in the public APIs. Strictly following semver dictates that this is a MINOR, not MAJOR release.



See semver [http://semver.org/#semantic-versioning-specification-semver] for more info.



We also realize that this can be frustrating for those out there not ready to upgrade to Xcode 7.3. Please know that we consider each release version carefully before deploying. Our decision to bump the MINOR version was not only due to strictly following semver, but also because it’s difficult and undesirable for all OSS libraries to bump MAJOR versions each time the Swift APIs are incremented. Alamofire would have had to go through 6 additional MAJOR versions if this was the policy. That would mean we’d already be running on Alamofire 10.x. Incrementing MAJOR versions this quickly is disruptive to the community and would cause even more confusion. Instead, we try to carefully plan our MAJOR version releases and accompany them with detailed Migration Guides to help make the transition as smooth as possible.


If anyone has additional questions, please feel free to open an issue and we’ll be more than happy to discuss further.









3.2.1 [https://github.com/Alamofire/Alamofire/releases/tag/3.2.1]


Released on 2016-02-27. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.2.1].



Updated



		StringResponseSerializer implementation to build with the latest Swift toolchain.
		Updated by Chris Cieslak [https://github.com/vivid-cieslak] in Pull Request
#1050 [https://github.com/Alamofire/Alamofire/pull/1050].








		Expanded the Component Libraries section and moved it up in the README.
		Updated by Christian Noon [https://github.com/cnoon].














Fixed



		Issue where JSON and plist custom content types were not retained during parameter encoding.
		Fixed by Christian Noon [https://github.com/cnoon] in Pull Request
#1088 [https://github.com/Alamofire/Alamofire/pull/1088].
















3.2.0 [https://github.com/Alamofire/Alamofire/releases/tag/3.2.0]


Released on 2016-02-07. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.2.0].



Added



		Notifications that post when an NSURLSessionTask changes state to allow support for the
network activity indicator.
		Added by Christian Noon [https://github.com/cnoon].








		Timeline struct to capture timings throughout the lifecycle of a Request.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1054 [https://github.com/Alamofire/Alamofire/issues/1054].








		A new Timeline section to the README.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1054 [https://github.com/Alamofire/Alamofire/issues/1054].








		NetworkReachabilityManager to listen for reachability status changes.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1053 [https://github.com/Alamofire/Alamofire/issues/1053].








		Unit tests for all the testable network reachability manager APIs.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1053 [https://github.com/Alamofire/Alamofire/issues/1053].








		A new Network Reachability section to the README.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#1053 [https://github.com/Alamofire/Alamofire/issues/1053].














Updated



		The NSURLSessionStream APIs to support tvOS.
		Updated by Christian Noon [https://github.com/cnoon].








		The ParameterEncoding encode method to allow empty parameters to still be encoded.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Issues
#1032 [https://github.com/Alamofire/Alamofire/issues/1032] and
#1049 [https://github.com/Alamofire/Alamofire/issues/1049].














Fixed



		Broken CocoaDocs generation by moving iOS Example project into Examples folder.
		Fixed by Jon Shier [https://github.com/jshier] in Pull Request
#1027 [https://github.com/Alamofire/Alamofire/issues/1027] in regards to Issue
#1025 [https://github.com/Alamofire/Alamofire/issues/1025].


















3.1.5 [https://github.com/Alamofire/Alamofire/releases/tag/3.1.5]


Released on 2016-01-17. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.1.5].



Added



		Package.swift to the project to support Swift Package Manager (SPM).
		Added by Kyle Fuller [https://github.com/kylef] in Pull Request
#979 [https://github.com/Alamofire/Alamofire/pull/979].








		Safeguards to the Request class’s debugDescription property.
		Added by tokorom [https://github.com/tokorom] in Pull Request
#983 [https://github.com/Alamofire/Alamofire/pull/983].














Updated



		Accept-Language header generation to use functional style.
		Updated by Dapeng Gao [https://github.com/dapenggao] in Pull Request
#982 [https://github.com/Alamofire/Alamofire/pull/982].








		Accept-Encoding and Accept-Language header values to have separator spaces between values.
		Updated by Christian Noon [https://github.com/cnoon].








		Copyright headers to include 2016! 🎉🎉🎉
		Updated by Christian Noon [https://github.com/cnoon].
















3.1.4 [https://github.com/Alamofire/Alamofire/releases/tag/3.1.4]


Released on 2015-12-16. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.1.4].



Added



		NSTemporaryExceptionMinimumTLSVersion documentation to the ATS section in the README.
		Added by Marandon Antoine [https://github.com/ntnmrndn] in Pull Request
#952 [https://github.com/Alamofire/Alamofire/pull/952].








		Added ReleaseTest configuration to allow running tests against optimized build.
		Added by Christian Noon [https://github.com/cnoon].














Updated



		Carthage instructions in the README to clearly callout the carthage update command.
		Updated by vlad [https://github.com/vlastachu] in Pull Request
#955 [https://github.com/Alamofire/Alamofire/pull/955].








		ParameterEncoding to early out when passed an empty parameters dictionary.
		Updated by Anthony Miller [https://github.com/AnthonyMDev] in Pull Request
#954 [https://github.com/Alamofire/Alamofire/pull/954].








		The certificatesInBundle to support cer, crt and der extensions.
		Updated by Jacob Jennings [https://github.com/jacobjennings] in Pull Request
#956 [https://github.com/Alamofire/Alamofire/pull/956].








		The ENABLE_TESTABILITY flag to NO for Release configuration and disabled tests for
non-test builds to better support Carthage.
		Updated by Jed Lewison [https://github.com/jedlewison] in Pull Request
#953 [https://github.com/Alamofire/Alamofire/pull/953].








		The server certificates for the TLS tests and added all certificates to all test targets.
		Updated by Christian Noon [https://github.com/cnoon].








		The Travis-CI configuration to Xcode 7.2, iOS 9.2, tvOS 9.1 and watchOS 2.1.
		Updated by Christian Noon [https://github.com/cnoon].














Removed



		SecCertificate array Swift workaround in ServerTrustPolicy for Xcode 7.2.
		Removed by Christian Noon [https://github.com/cnoon].
















3.1.3 [https://github.com/Alamofire/Alamofire/releases/tag/3.1.3]


Released on 2015-11-22. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.1.3].



Added



		Custom Info.plist for tvOS setting the UIRequiredDeviceCapabilities to arm64.
		Added by Simon Støvring [https://github.com/simonbs] in Pull Request
#913 [https://github.com/Alamofire/Alamofire/pull/913].














Updated



		All code samples in the README to use https instead of http.
		Updated by Tomonobu Sato [https://github.com/tmnb] in Pull Request
#912 [https://github.com/Alamofire/Alamofire/pull/912].
















3.1.2 [https://github.com/Alamofire/Alamofire/releases/tag/3.1.2]


Released on 2015-11-06. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.1.2].



Updated



		Code signing on iOS simulator builds to not sign simulator builds.
		Updated by John Heaton [https://github.com/JRHeaton] in Pull Request
#903 [https://github.com/Alamofire/Alamofire/pull/903].








		Code signing on watchOS and tvOS simulators builds to not sign simulator builds.
		Updated by Christian Noon [https://github.com/cnoon].
















3.1.1 [https://github.com/Alamofire/Alamofire/releases/tag/3.1.1]


Released on 2015-10-31. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.1.1].



Added



		Support for 204 response status codes in the response serializers.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#889 [https://github.com/Alamofire/Alamofire/pull/889].








		ATS section to the README explaining how to configure the settings.
		Added by Christian Noon [https://github.com/cnoon] in regards to Issue
#876 [https://github.com/Alamofire/Alamofire/issues/876].














Updated



		Several unnecessary uses of NSString with String.
		Updated by Nicholas Maccharoli [https://github.com/Nirma] in Pull Request
#885 [https://github.com/Alamofire/Alamofire/pull/885].








		Content type validation to always succeeds when server data is nil or zero length.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#890 [https://github.com/Alamofire/Alamofire/pull/890].














Removed



		The mention of rdar://22307360 from the README since Xcode 7.1 has been released.
		Removed by Elvis Nuñez [https://github.com/3lvis] in Pull Request
#891 [https://github.com/Alamofire/Alamofire/pull/891].








		An unnecessary availability check now that Xcode 7.1 is out of beta.
		Removed by Christian Noon [https://github.com/cnoon].








		The playground from the project due to instability reasons.
		Removed by Christian Noon [https://github.com/cnoon].








		The data length checks in the responseData and responseString serializers.
		Removed by Christian Noon [https://github.com/cnoon] in Pull Request
#889 [https://github.com/Alamofire/Alamofire/pull/889].
















3.1.0 [https://github.com/Alamofire/Alamofire/releases/tag/3.1.0]


Released on 2015-10-22. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.1.0].



Added



		New tvOS framework and test targets to the project.
		Added by Bob Scarano [https://github.com/bscarano] in Pull Request
#767 [https://github.com/Alamofire/Alamofire/pull/767].








		The tvOS deployment target to the podspec.
		Added by Christian Noon [https://github.com/cnoon].








		The BITCODE_GENERATION_MODE user defined setting to tvOS framework target.
		Added by Christian Noon [https://github.com/cnoon].














Updated



		The README to include tvOS and bumped the required version of Xcode.
		Updated by Christian Noon [https://github.com/cnoon].








		The default tvOS and watchOS deployment targets in the Xcode project.
		Updated by Christian Noon [https://github.com/cnoon].








		The APPLICATION_EXTENSION_API_ONLY enabled flag to YES in the tvOS framework target.
		Updated by James Barrow [https://github.com/Baza207] in Pull Request
#771 [https://github.com/Alamofire/Alamofire/pull/771].








		The Travis-CI yaml file to run watchOS and tvOS builds and tests on xcode7.1 osx_image.
		Updated by Christian Noon [https://github.com/cnoon].


















3.0.1 [https://github.com/Alamofire/Alamofire/releases/tag/3.0.1]


Released on 2015-10-19. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.0.1].



Added



		Tests around content type validation with accept parameters.
		Added by Christian Noon [https://github.com/cnoon].














Fixed



		Content type validation issue where parameter parsing on ; was incorrect.
		Fixed by Christian Noon [https://github.com/cnoon].
















3.0.0 [https://github.com/Alamofire/Alamofire/releases/tag/3.0.0]


Released on 2015-10-10. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.0.0].



Updated



		Downloading a File code sample in the README to compile against Swift 2.0.
		Updated by Screon [https://github.com/Screon] in Pull Request
#827 [https://github.com/Alamofire/Alamofire/pull/827].








		Download code samples in the README to use response serializer.
		Updated by Christian Noon [https://github.com/cnoon].








		CocoaPods and Carthage installation instructions for 3.0.
		Updated by Christian Noon [https://github.com/cnoon].








		Carthage description and installation instructions in the README.
		Updated by Ashton Williams [https://github.com/Ashton-W] in Pull Request
#843 [https://github.com/Alamofire/Alamofire/pull/843].








		URL encoding internals to leverage the dictionary keys lazy evaluation.
		Updated by Christian Noon [https://github.com/cnoon].














Fixed



		Small typo in the Alamofire 3.0 Migration Guide Response section.
		Fixed by neugartf [https://github.com/neugartf] in Pull Request
#826 [https://github.com/Alamofire/Alamofire/pull/826].








		User defined BITCODE_GENERATION_MODE setting for Carthage builds.
		Fixed by Christian Noon [https://github.com/cnoon] in regards to Issue
#835 [https://github.com/Alamofire/Alamofire/issues/835].


















3.0.0-beta.3 [https://github.com/Alamofire/Alamofire/releases/tag/3.0.0-beta.3]


Released on 2015-09-27. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.0.0-beta.3].



Updated



		The Response initializer to have a public ACL instead of internal.
		Updated by Christian Noon [https://github.com/cnoon].
















3.0.0-beta.2 [https://github.com/Alamofire/Alamofire/releases/tag/3.0.0-beta.2]


Released on 2015-09-26. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.0.0-beta.2].



Added



		Tests around the header behavior for redirected requests.
		Added by Christian Noon [https://github.com/cnoon] in regards to Issue
#798 [https://github.com/Alamofire/Alamofire/issues/798].








		A migration guide for Alamofire 3.0 documenting all API changes.
		Added by Christian Noon [https://github.com/cnoon].














Updated



		Response initializer to have internal ACL.
		Updated by Christian Noon [https://github.com/cnoon].








		All sample code in the README to conform to the Alamofire 3.0 APIs.
		Updated by Christian Noon [https://github.com/cnoon].








		URL percent escaping to only batch on OS’s where required improving
overall performance.
		Updated by Christian Noon [https://github.com/cnoon].








		Basic auth example in the README to compile on Swift 2.0.
		Updated by David F. Muir V [https://github.com/dfmuir] in Pull Request
#810 [https://github.com/Alamofire/Alamofire/issues/810].














Fixed



		Compiler errors in the playground due to the new response serializer APIs.
		Fixed by Christian Noon [https://github.com/cnoon].
















3.0.0-beta.1 [https://github.com/Alamofire/Alamofire/releases/tag/3.0.0-beta.1]


Released on 2015-09-21. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A3.0.0-beta.1].



Added



		A new Response struct to simplify response serialization.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#792 [https://github.com/Alamofire/Alamofire/pull/792].








		A new initializer to the Manager allowing dependency injection of the
underlying NSURLSession.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#795 [https://github.com/Alamofire/Alamofire/pull/795].








		Tests around the new Manager initialization methods.








Updated



		Result type to take two generic parameters (Value and Error) where Error
conforms to ErrorType.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#791 [https://github.com/Alamofire/Alamofire/pull/791].








		All response serializers to now return the original server data as NSData?.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#791 [https://github.com/Alamofire/Alamofire/pull/791].








		The TaskDelegate to store an error as an NSError instead of ErrorType.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#791 [https://github.com/Alamofire/Alamofire/pull/791].








		The ValidationResult failure case to require an NSError instead of ErrorType.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#791 [https://github.com/Alamofire/Alamofire/pull/791].








		All tests around response serialization and Result type usage.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#791 [https://github.com/Alamofire/Alamofire/pull/791].








		All response serializers to use the new Response type.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request  -
#792 [https://github.com/Alamofire/Alamofire/pull/792].








		The designated initializer for a Manager to accept a SessionDelegate parameter
allowing dependency injection for better background session support.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#795 [https://github.com/Alamofire/Alamofire/pull/795].


















2.0.2 [https://github.com/Alamofire/Alamofire/releases/tag/2.0.2]


Released on 2015-09-20. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A2.0.2].



Updated



		The Embedded Framework documentation to include git init info.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Issue
#782 [https://github.com/Alamofire/Alamofire/issues/782].














Fixed



		Alamofire iOS framework target by adding Alamofire iOS Tests as Target Dependency.
		Fixed by Nicky Gerritsen [https://github.com/nickygerritsen] in Pull Request
#780 [https://github.com/Alamofire/Alamofire/pull/780].








		Percent encoding issue for long Chinese strings using URL parameter encoding.
		Fixed by Christian Noon [https://github.com/cnoon] in regards to Issue
#206 [https://github.com/Alamofire/Alamofire/issues/206].
















2.0.1 [https://github.com/Alamofire/Alamofire/releases/tag/2.0.1]


Released on 2015-09-16. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A2.0.1].



Updated



		The CocoaPods installation instructions in the README.
		Updated by Christian Noon [https://github.com/cnoon].








		The Carthage installation instructions in the README.
		Updated by Gustavo Barbosa [https://github.com/barbosa] in Pull Request
#759 [https://github.com/Alamofire/Alamofire/pull/759].














Fixed



		The link to the 2.0 migration guide in the README.
		Fixed by Dwight Watson [https://github.com/dwightwatson] in Pull Request
#750 [https://github.com/Alamofire/Alamofire/pull/750].








		Issue where NTLM authentication credentials were not used for authentication challenges.
		Fixed by Christian Noon [https://github.com/cnoon] in regards to Issue
#721 [https://github.com/Alamofire/Alamofire/pull/721].
















2.0.0 [https://github.com/Alamofire/Alamofire/releases/tag/2.0.0]


Released on 2015-09-09. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A2.0.0].



Added



		A new URLEncodedInURL case to the ParameterEncoding for encoding in the URL.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#742 [https://github.com/Alamofire/Alamofire/pull/742].


















2.0.0-beta.4 [https://github.com/Alamofire/Alamofire/releases/tag/2.0.0-beta.4]


Released on 2015-09-06. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A2.0.0-beta.4].



Added



		The parameters and encoding parameters to download APIs.
		Added by Christian Noon [https://github.com/cnoon] in regards to Issue
#719 [https://github.com/Alamofire/Alamofire/issues/719].








		Section to the README about wildcard domain matching with server trust policies.
		Added by Sai [https://github.com/sai-prasanna] in Pull Request
#718 [https://github.com/Alamofire/Alamofire/pull/718].








		A UTF-8 charset to Content-Type header for a URL encoded body.
		Added by Cheolhee Han [https://github.com/cheolhee] in Pull Request
#731 [https://github.com/Alamofire/Alamofire/pull/731].








		Tests around posting unicode parameters with URL encoding.
		Added by Christian Noon [https://github.com/cnoon] in regards to Pull Request
#731 [https://github.com/Alamofire/Alamofire/pull/731].








		Tests for uploading base 64 encoded image data inside JSON.
		Added by Christian Noon [https://github.com/cnoon] in regards to Issue
#738 [https://github.com/Alamofire/Alamofire/issues/738].








		An Alamofire 2.0 migration guide document to the new Documentation folder.
		Added by Christian Noon [https://github.com/cnoon].








		A Migration Guides section to the README with link to 2.0 guide.
		Added by Christian Noon [https://github.com/cnoon].














Updated



		Response serialization to prevent unnecessary call to response serializer.
		Updated by Julien Ducret [https://github.com/brocoo] in Pull Request
#716 [https://github.com/Alamofire/Alamofire/pull/716].








		Travis-CI yaml file to support iOS 9, OSX 10.11 and Xcode 7.
		Updated by Christian Noon [https://github.com/cnoon].








		Result types to store an ErrorType instead of NSError.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Issue
#732 [https://github.com/Alamofire/Alamofire/issues/732].








		Docstrings on the download method to be more accurate.
		Updated by Christian Noon [https://github.com/cnoon].








		The README to require Xcode 7 beta 6.
		Updated by Christian Noon [https://github.com/cnoon].








		The background session section of the README to use non-deprecated API.
		Updated by David F. Muir V [https://github.com/dfmuir] in Pull Request
#724 [https://github.com/Alamofire/Alamofire/pull/724].








		The playground to use the Result type.
		Updated by Jonas Schmid [https://github.com/jschmid] in Pull Request
#726 [https://github.com/Alamofire/Alamofire/pull/726].








		Updated progress code samples in the README to show how to call onto the main queue.
		Updated by Christian Noon [https://github.com/cnoon].














Removed



		The AFNetworking sections from the FAQ in the README.
		Removed by Christian Noon [https://github.com/cnoon].














Fixed



		Issue on Windows where the wildcarded cert name in the test suite included asterisk.
		Fixed by Christian Noon [https://github.com/cnoon] in regards to Issue
#723 [https://github.com/Alamofire/Alamofire/issues/723].








		Crash when multipart form data was uploaded from in-memory data on background session.
		Fixed by Christian Noon [https://github.com/cnoon] in regards to Issue
#740 [https://github.com/Alamofire/Alamofire/issues/740].








		Issue where the background session completion handler was not called on the main queue.
		Fixed by Christian Noon [https://github.com/cnoon] in regards to Issue
#728 [https://github.com/Alamofire/Alamofire/issues/728].
















2.0.0-beta.3 [https://github.com/Alamofire/Alamofire/releases/tag/2.0.0-beta.3]


Released on 2015-08-25.



Removed



		The override for NSMutableURLRequest for the URLRequestConvertible protocol
conformance that could cause unwanted URL request referencing.
		Removed by Christian Noon [https://github.com/cnoon].
















2.0.0-beta.2 [https://github.com/Alamofire/Alamofire/releases/tag/2.0.0-beta.2]


Released on 2015-08-24. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A2.0.0-beta.2].



Added



		Host and certificate chain validation section to the README.
		Added by Christian Noon [https://github.com/cnoon].








		Tests verifying configuration headers are sent with all configuration types.
		Added by Christian Noon [https://github.com/cnoon] in regards to Issue
#692 [https://github.com/Alamofire/Alamofire/issues/692].








		New rdar to the list in the README about the #available check issue.
		Added by Christian Noon [https://github.com/cnoon].








		Override for NSMutableURLRequest for the URLRequestConvertible protocol.
		Added by Christian Noon [https://github.com/cnoon].














Updated



		The README to note that CocoaPods 0.38.2 is required.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Issue
#682 [https://github.com/Alamofire/Alamofire/issues/682].








		The README to include note about keeping a reference to the Manager.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Issue
#681 [https://github.com/Alamofire/Alamofire/issues/681].








		Server trust host validation over to use SSL policy evaluation.
		Updated by Christian Noon [https://github.com/cnoon].








		The documentation for the URLRequestConvertible section in the README.
		Updated by Christian Noon [https://github.com/cnoon].








		The ServerTrustPolicyManager to be more flexible by using public ACL.
		Updated by Jan Riehn [https://github.com/jriehn] in Pull Request
#696 [https://github.com/Alamofire/Alamofire/pull/696].








		The ServerTrustPolicyManager policies property to use public ACL and
added docstrings.
		Updated by Christian Noon [https://github.com/cnoon].








		The Ono response serializer example for Swift 2.0 in the README.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Issue
#700 [https://github.com/Alamofire/Alamofire/issues/700].








		Result failure case to store an ErrorType instead of NSError.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Issue
#703 [https://github.com/Alamofire/Alamofire/issues/703].








		All source code to compile with Xcode 7 beta 6.
		Updated by Michael Gray [https://github.com/mishagray] in Pull Request
#707 [https://github.com/Alamofire/Alamofire/pull/707].














Removed



		The required declaration on the Manager init method.
		Removed by Christian Noon [https://github.com/cnoon] in regards to Issue
#672 [https://github.com/Alamofire/Alamofire/issues/672].














Fixed



		Issue where the TaskDelegate operation queue would leak if the task was
never started.
		Fixed by Christian Noon [https://github.com/cnoon].








		Compiler issue on OS X target when creating background configurations
in the test suite.
		Fixed by Christian Noon [https://github.com/cnoon] in regards to Issue
#693 [https://github.com/Alamofire/Alamofire/issues/693].
















2.0.0-beta.1 [https://github.com/Alamofire/Alamofire/releases/tag/2.0.0-beta.1]


Released on 2015-08-10. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A2.0.0-beta.1].



Added



		A watchOS deployment target to the podspec.
		Added by Kyle Fuller [https://github.com/kylef] in Pull Request
#574 [https://github.com/Alamofire/Alamofire/pull/574].








		Full screen support in the iOS Example App.
		Added by Corinne Krych [https://github.com/corinnekrych] in Pull Request
#612 [https://github.com/Alamofire/Alamofire/pull/612].








		Temporary workaround for SecCertificate array compiler crash.
		Added by Robert Rasmussen [https://github.com/robrasmussen] in Issue
#610 [https://github.com/Alamofire/Alamofire/issues/610].








		Result and Error types to refactor response validation and serialization.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#627 [https://github.com/Alamofire/Alamofire/pull/627].








		Tests around response data, string and json serialization result behavior.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#627 [https://github.com/Alamofire/Alamofire/pull/627].








		CustomStringConvertible and CustomDebugStringConvertible conformance
to the Result enumeration.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#648 [https://github.com/Alamofire/Alamofire/pull/648].








		A Resume Data section to the README inside the Downloads section.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#648 [https://github.com/Alamofire/Alamofire/pull/648].








		A watchOS framework target to the project.
		Added by Tobias Ottenweller [https://github.com/tomco] in Pull Request
#616 [https://github.com/Alamofire/Alamofire/pull/616].








		Result tests pushing code coverage for Result enum to 100%.
		Added by Christian Noon [https://github.com/cnoon].








		Tests around all response serializer usage.
		Added by Christian Noon [https://github.com/cnoon].








		Public docstrings for all public SessionDelegate methods.
		Added by Christian Noon [https://github.com/cnoon].








		A section to the README that calls out all open rdars affecting Alamofire.
		Added by Christian Noon [https://github.com/cnoon].








		Test for wildcard validation that contains response with nil MIME type.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#662 [https://github.com/Alamofire/Alamofire/pull/662].








		Support for stream tasks in iOS 9+ and OSX 10.11+.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#659 [https://github.com/Alamofire/Alamofire/pull/659].














Updated



		All logic to compile against Swift 2.0.
		Updated by Christian Noon [https://github.com/cnoon].








		All logic to use the latest Swift 2.0 conventions.
		Updated by Christian Noon [https://github.com/cnoon].








		All public docstrings to the latest Swift 2.0 syntax.
		Updated by Christian Noon [https://github.com/cnoon].








		URLRequestConvertible to return an NSMutableURLRequest.
		Updated by Christian Noon [https://github.com/cnoon].








		All HTTP requests to HTTPS to better align with ATS.
		Updated by Christian Noon [https://github.com/cnoon].








		The escape method in ParameterEncoding to use non-deprecated methods.
		Updated by Christian Noon [https://github.com/cnoon].








		All source code and docstrings to fit roughly within 120 characters.
		Updated by Christian Noon [https://github.com/cnoon].








		The MultipartFormData encoding to leverage Swift 2.0 error handling.
		Updated by Christian Noon [https://github.com/cnoon].








		All README code samples to match the latest Swift 2.0 API changes.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#648 [https://github.com/Alamofire/Alamofire/pull/648].








		All frameworks to enable code coverage generation.
		Updated by Christian Noon [https://github.com/cnoon].








		All frameworks to set the enable testability flag to YES for release builds.
		Updated by Christian Noon [https://github.com/cnoon] in regard to Issue
#652 [https://github.com/Alamofire/Alamofire/issues/652].








		ParameterEncoding to leverage guard for parameters to increase safety.
		Updated by Christian Noon [https://github.com/cnoon].








		iOS Example App to use optional bind around response to safely extract headers.
		Updated by John Pope [https://github.com/johndpope] in Pull Request
#665 [https://github.com/Alamofire/Alamofire/pull/665].








		The queryComponents and escape methods in ParameterEncoding to public to
better support .Custom encoding.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#660 [https://github.com/Alamofire/Alamofire/pull/660].








		The static error convenience functions to a public ACL.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Issue
#668 [https://github.com/Alamofire/Alamofire/issues/668].














Removed



		Explicit string values in ParameterEncoding since they are now implied.
		Removed by Christian Noon [https://github.com/cnoon].








		An OSX cookie check in the CustomDebugStringConvertible conformance of a Request.
		Removed by Christian Noon [https://github.com/cnoon].














Fixed



		Issue in automatic validation tests where mutable URL request was not used.
		Fixed by Christian Noon [https://github.com/cnoon].








		Potential crash cases in Validation MIME type logic exposed by chaining.
		Fixed by Christian Noon [https://github.com/cnoon].








		Compiler issue in the iOS Example App around Result type usage.
		Fixed by Jan Kase [https://github.com/jankase] in Pull Request
#639 [https://github.com/Alamofire/Alamofire/pull/639].








		The error code in the custom response serializers section of the README.
		Fixed by Christian Noon [https://github.com/cnoon].


















1.3.1 [https://github.com/Alamofire/Alamofire/releases/tag/1.3.1]


Released on 2015-08-10. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A1.3.1].



Fixed



		Issue where a completed task was not released by the SessionDelegate if the
task override closure was set.
		Fixed by Christian Noon [https://github.com/cnoon] in regards to Issue
#622 [https://github.com/Alamofire/Alamofire/issues/622].
















1.3.0 [https://github.com/Alamofire/Alamofire/releases/tag/1.3.0]


Released on 2015-07-24. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A1.3.0].



Added



		Test case around NSURLProtocol checking header passthrough behaviors.
		Added by Christian Noon [https://github.com/cnoon] in regards to Issue
#473 [https://github.com/Alamofire/Alamofire/issues/473].








		Stream method on Request to receive data incrementally from data responses.
		Added by Peter Sobot [https://github.com/psobot] in Pull Request
#512 [https://github.com/Alamofire/Alamofire/pull/512].








		Example to the README demonstrating how to use the responseCollection serializer.
		Added by Josh Brown [https://github.com/joshuatbrown] in Pull Request
#532 [https://github.com/Alamofire/Alamofire/pull/532].








		Link to the README to the CocoaDocs documentation for Alamofire.
		Added by Robert [https://github.com/rojotek] in Pull Request
#541 [https://github.com/Alamofire/Alamofire/pull/541].








		Support for uploading MultipartFormData in-memory and streaming from disk.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#539 [https://github.com/Alamofire/Alamofire/pull/539].








		Tests for uploading MultipartFormData with complete code coverage.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#539 [https://github.com/Alamofire/Alamofire/pull/539].








		The iOS 8.4 simulator to the Travis CI builds by switching to the Xcode 6.4 build.
		Added by Syo Ikeda [https://github.com/ikesyo] in Pull Request
#568 [https://github.com/Alamofire/Alamofire/pull/568].








		Tests for the custom header support with complete code coverage.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#586 [https://github.com/Alamofire/Alamofire/pull/586].








		Section to the README about new HTTP header support in the global functions.
		Added by Christian Noon [https://github.com/cnoon].








		Basic auth Authorization header example to the README.
		Added by Christian Noon [https://github.com/cnoon].








		TLS certificate and public key pinning support through the ServerTrustPolicy.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#581 [https://github.com/Alamofire/Alamofire/pull/581].








		Tests for TLS certificate and public key pinning with complete code coverage.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#581 [https://github.com/Alamofire/Alamofire/pull/581].








		Security section to the README detailing various server trust policies.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#581 [https://github.com/Alamofire/Alamofire/pull/581].








		The resumeData property to Request to expose outside data response serializer.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#595 [https://github.com/Alamofire/Alamofire/pull/595].








		Download request sample to iOS example app.
		Added by Kengo Yokoyama [https://github.com/kentya6] in Pull Request
#579 [https://github.com/Alamofire/Alamofire/pull/579].














Updated



		The INFOPLIST_FILE Xcode project setting to be a relative path.
		Updated by Christian Noon [https://github.com/cnoon].








		Exposed persistence parameter for basic auth credentials.
		Updated by Christian Noon [https://github.com/cnoon] in regard to Issue
#537 [https://github.com/Alamofire/Alamofire/issues/537].








		The Travis CI builds to run a full pod lib lint pass on the source.
		Updated by Kyle Fuller [https://github.com/kylef] in Pull Request
#542 [https://github.com/Alamofire/Alamofire/pull/542].








		All cases of force unwrapping with optional binding and where clause when applicable.
		Updated by Syo Ikeda [https://github.com/ikesyo] in Pull Request
#557 [https://github.com/Alamofire/Alamofire/pull/557].








		The ParameterEncoding encode return tuple to return a mutable URL request.
		Updated by Petr Korolev [https://github.com/skywinder] in Pull Request
#478 [https://github.com/Alamofire/Alamofire/pull/478].








		The URLRequest convenience method to return a mutable NSURLRequest.
		Updated by Christian Noon [https://github.com/cnoon].








		The request / download / upload methods to support custom headers.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#586 [https://github.com/Alamofire/Alamofire/pull/586].








		The global request / download / upload method external parameters convention.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#586 [https://github.com/Alamofire/Alamofire/pull/586].








		Response serialization to use generics and a ResponseSerializer protocol.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#593 [https://github.com/Alamofire/Alamofire/pull/593].








		Download task delegate to store resume data for a failed download if available.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#595 [https://github.com/Alamofire/Alamofire/pull/595].








		The TaskDelegate.queue to public to allow custom request extension operations.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#590 [https://github.com/Alamofire/Alamofire/pull/590].








		The README code samples for Advanced Response Serialization.
		Updated by Christian Noon [https://github.com/cnoon].














Removed



		An unnecessary NSURLSessionConfiguration type declaration that can be inferred.
		Removed by Avismara [https://github.com/avismarahl] in Pull Request
#576 [https://github.com/Alamofire/Alamofire/pull/576].








		Unnecessary respondsToSelector overrides for SessionDelegate methods.
		Removed by Christian Noon [https://github.com/cnoon] in Pull Request
#590 [https://github.com/Alamofire/Alamofire/pull/590].








		Unnecessary calls to self throughout source, test and example logic.
		Removed by Christian Noon [https://github.com/cnoon].














Fixed



		Random test suite basic auth failures by clearing credentials in setUp method.
		Fixed by Christian Noon [https://github.com/cnoon].








		Error where wildcard was failing due to missing response MIME type.
		Fixed by Christian Noon [https://github.com/cnoon] in Pull Request
#598 [https://github.com/Alamofire/Alamofire/pull/598].








		Typo in the basic auth headers example code in the README.
		Fixed by 蒲公英の生活 [https://github.com/fewspider] in Pull Request
#605 [https://github.com/Alamofire/Alamofire/pull/605].








		Issue where the example app was printing elapsed time in optional form.
		Fixed by Christian Noon [https://github.com/cnoon].














Upgrade Notes


There are a couple changes in the 1.3.0 release that are not fully backwards
compatible and need to be called out.



		The global request / download / upload external parameter naming conventions
were not consistent nor did they match the Manager equivalents. By making them
consistent across the board, this introduced the possibility that you “may” need to
make slight modifications to your global function calls.





		In order to support generic response serializers, the lowest level
Request.response method had to be converted to a generic method leveraging the new
ResponseSerializer protocol. This has many advantages, the most obvious being that
the response convenience method now returns an NSData? optional instead of an
AnyObject? optional. Nice!



Please note that every effort is taken to maintain proper semantic versioning. In
these two rare cases, it was deemed to be in the best interest of the community to
slightly break semantic versioning to unify naming conventions as well as expose a
much more powerful form of response serialization.







If you have any issues, please don’t hesitate to reach out through
GitHub [https://github.com/Alamofire/Alamofire/issues] or
Twitter [https://twitter.com/AlamofireSF].



















1.2.3 [https://github.com/Alamofire/Alamofire/releases/tag/1.2.3]


Released on 2015-06-12. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A1.2.3].



Added



		Tests for data task progress closure and NSProgress updates.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#494 [https://github.com/Alamofire/Alamofire/pull/494].








		More robust tests around download and upload progress.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#494 [https://github.com/Alamofire/Alamofire/pull/494].








		More robust redirect tests around default behavior and task override closures.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#507 [https://github.com/Alamofire/Alamofire/pull/507].








		The “[” and “]” to the legal escape characters and added more documentation.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#504 [https://github.com/Alamofire/Alamofire/pull/504].








		Percent escaping tests around reserved / unreserved / illegal characters.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#504 [https://github.com/Alamofire/Alamofire/pull/504].








		Tests for various Cache-Control headers with different request cache policies.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#505 [https://github.com/Alamofire/Alamofire/pull/505].








		Link to Carthage in the README.
		Added by Josh Brown [https://github.com/joshuatbrown] in Pull Request
#520 [https://github.com/Alamofire/Alamofire/pull/520].














Updated



		iOS 7 instructions to cover multiple Swift files in the README.
		Updated by Sébastien Michoy [https://github.com/SebastienMichoy] in regards
to Issue #479 [https://github.com/Alamofire/Alamofire/pull/479].








		All tests to follow the Given / When / Then structure.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#489 [https://github.com/Alamofire/Alamofire/pull/489].








		All tests to be crash safe.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#489 [https://github.com/Alamofire/Alamofire/pull/489].








		The OS X tests so that they are all passing again.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#489 [https://github.com/Alamofire/Alamofire/pull/489].








		Re-enabled Travis-CI tests for both iOS and Mac OS X.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#506 [https://github.com/Alamofire/Alamofire/pull/506].








		Travis-CI test suite to run all tests in both debug and release.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#506 [https://github.com/Alamofire/Alamofire/pull/506].








		Travis-CI test suite to run all tests on iOS 8.1, 8.2 and 8.3 as well as Mac OS X 10.10.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#506 [https://github.com/Alamofire/Alamofire/pull/506].








		Travis-CI test suite to run pod lib lint against the latest version of CocoaPods.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#506 [https://github.com/Alamofire/Alamofire/pull/506].














Fixed



		Random deinitialization test failure by handling task state race condition.
		Fixed by Christian Noon [https://github.com/cnoon].








		Typo in the API Parameter Abstraction in the README.
		Fixed by Josh Brown [https://github.com/joshuatbrown] in Pull Request
#500 [https://github.com/Alamofire/Alamofire/pull/500].








		Cookies are now only applied in the DebugPrintable API when appropriate.
		Fixed by Alex Plescan [https://github.com/alexpls] in Pull Request
#516 [https://github.com/Alamofire/Alamofire/pull/516].
















1.2.2 [https://github.com/Alamofire/Alamofire/releases/tag/1.2.2]


Released on 2015-05-13. All issues associated with this milestone can be found using this
filter [https://github.com/Alamofire/Alamofire/issues?utf8=✓&q=milestone%3A1.2.2].



Added



		Contributing Guidelines document to the project.
		Added by Mattt Thompson [https://github.com/mattt].








		Documentation to the URLStringConvertible protocol around RFC specs.
		Added by Mattt Thompson [https://github.com/mattt] in regards to Issue
#464 [https://github.com/Alamofire/Alamofire/pull/464].








		The Carthage/Build ignore flag to the .gitignore file.
		Added by Tomáš Slíž [https://github.com/tomassliz] in Pull Request
#451 [https://github.com/Alamofire/Alamofire/pull/451].








		The .DS_Store ignore flag to the .gitignore file.
		Added by Christian Noon [https://github.com/cnoon].








		Response status code asserts for redirect tests.
		Added by Christian Noon [https://github.com/cnoon].








		A CHANGELOG to the project documenting each official release.
		Added by Christian Noon [https://github.com/cnoon].














Updated



		SessionDelegate override closure properties to match the method signatures.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#456 [https://github.com/Alamofire/Alamofire/pull/456].








		Documentation for the Printable protocol on Request to reference output stream
rather than the specific OutputStreamType.
		Updated by Mattt Thompson [https://github.com/mattt].








		Deployment targets to iOS 8.0 and OS X 10.9 for the respective frameworks.
		Updated by Christian Noon [https://github.com/cnoon].








		SessionDelegate willPerformHTTPRedirection method to accept optional return type
from override closure.
		Updated by Chungsub Kim [https://github.com/subicura] in Pull Request
#469 [https://github.com/Alamofire/Alamofire/pull/469].








		Embedded Framework and Source File documentation in the README.
		Updated by Christian Noon [https://github.com/cnoon] in regards to Issue
#427 [https://github.com/Alamofire/Alamofire/pull/427].








		Alamofire source to be split into multiple core files and feature files.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#471 [https://github.com/Alamofire/Alamofire/pull/471].








		TaskDelegate override closure signatures and delegate method implementations.
		Updated by Christian Noon [https://github.com/cnoon].














Removed



		Travis-CI build status from the README until Xcode 6.3 is supported.
		Removed by Mattt Thompson [https://github.com/mattt].








		Unnecessary parentheses from closure parameters and typealiases.
		Removed by Christian Noon [https://github.com/cnoon].














Fixed



		SessionDelegate override closure documentation.
		Fixed by Siemen Sikkema [https://github.com/siemensikkema] in Pull Request
#448 [https://github.com/Alamofire/Alamofire/pull/448].








		Some inaccurate documentation on several of the public SessionDelegate closures.
		Fixed by Christian Noon [https://github.com/cnoon] in Pull Request
#456 [https://github.com/Alamofire/Alamofire/pull/456].








		A deinit race condition where the task delegate queue could fail to dispatch_release.
		Fixed by Christian Noon [https://github.com/cnoon] in Pull Request
#379 [https://github.com/Alamofire/Alamofire/pull/379].








		TaskDelegate to only set qualityOfService for NSOperationQueue on iOS 8+.
		Fixed by Christian Noon [https://github.com/cnoon] in regards to Issue
#472 [https://github.com/Alamofire/Alamofire/pull/472].








		Expectation order issue in the redirect tests.
		Fixed by Christian Noon [https://github.com/cnoon].








		DataTaskDelegate behavior ensuring NSProgress values and progress override
closures are always updated and executed.
		Fixed by Christian Noon [https://github.com/cnoon] in regards to Issue
#407 [https://github.com/Alamofire/Alamofire/pull/407].
















1.2.1 [https://github.com/Alamofire/Alamofire/releases/tag/1.2.1]


Released on 2015-04-21.



Added



		Redirect tests for the SessionDelegate.
		Added by Jonathan Hersh [https://github.com/jhersh] in Pull Request
#424 [https://github.com/Alamofire/Alamofire/pull/424].








		TLS evaluation test case.
		Added by Mattt Thompson [https://github.com/mattt].








		Additional guards to ensure unique task identifiers for upload and download tasks.
		Added by Mattt Thompson [https://github.com/mattt] in regards to Issue
#393 [https://github.com/Alamofire/Alamofire/pull/393].














Updated



		Required Xcode version to Xcode to 6.3 in the README.
		Updated by Mattt Thompson [https://github.com/mattt].








		SSL validation to use default system validation by default.
		Updated by Michael Thole [https://github.com/mthole] in Pull Request
#394 [https://github.com/Alamofire/Alamofire/pull/394].
















1.2.0 [https://github.com/Alamofire/Alamofire/releases/tag/1.2.0]


Released on 2015-04-09.



Added



		New testURLParameterEncodeStringWithSlashKeyStringWithQuestionMarkValueParameter
test.
		Added by Mattt Thompson [https://github.com/mattt] in regards to Issue
#370 [https://github.com/Alamofire/Alamofire/pull/370].








		New backgroundCompletionHandler property to the Manager called when the
session background tasks finish.
		Added by Christian Noon [https://github.com/cnoon] in Pull Request
#317 [https://github.com/Alamofire/Alamofire/pull/317].














Updated



		Request computed property progress to no longer be an optional type.
		Updated by Pitiphong Phongpattranont [https://github.com/pitiphong-p] in
Pull Request
#404 [https://github.com/Alamofire/Alamofire/pull/404].








		All logic to Swift 1.2.
		Updated by Aron Cedercrantz [https://github.com/rastersize] and
Mattt Thompson [https://github.com/mattt].








		The responseString serializer to respect server provided character encoding with
overrideable configuration, default string response serialization to ISO-8859-1, as
per the HTTP/1.1 specification.
		Updated by Kyle Fuller [https://github.com/kylef] and
Mattt Thompson [https://github.com/mattt] in Pull Request
#359 [https://github.com/Alamofire/Alamofire/pull/359] which also resolved Issue
#358 [https://github.com/Alamofire/Alamofire/pull/358].








		SessionDelegate methods to first call the override closures if set.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#317 [https://github.com/Alamofire/Alamofire/pull/317].








		SessionDelegate and all override closures to a public ACL allowing for customization.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#317 [https://github.com/Alamofire/Alamofire/pull/317].








		SessionDelegate class to final.
		Updated by Mattt Thompson [https://github.com/mattt].








		SessionDelegate header documentation for method override properties.
		Updated by Mattt Thompson [https://github.com/mattt].








		Xcode project to set APPLICATION_EXTENSION_API_ONLY to YES for OS X target.
		Updated by Mattt Thompson [https://github.com/mattt].














Removed



		Ambiguous response serializer methods that collided with default parameters.
		Removed by Christian Noon [https://github.com/cnoon] in Pull Request
#408 [https://github.com/Alamofire/Alamofire/pull/408].








		SessionDelegate initializer and replaced with default property value.
		Removed by Mattt Thompson [https://github.com/mattt].














Fixed



		Async tests where asserts were potentially not being run by by moving
expectation.fullfill() to end of closures.
		Fixed by Nate Cook [https://github.com/natecook1000] in Pull Request
#420 [https://github.com/Alamofire/Alamofire/pull/420].








		Small grammatical error in the ParameterEncoding section of the README.
		Fixed by Aaron Brager [https://github.com/getaaron] in Pull Request
#416 [https://github.com/Alamofire/Alamofire/pull/416].








		Typo in a download test comment.
		Fixed by Aaron Brager [https://github.com/getaaron] in Pull Request
#413 [https://github.com/Alamofire/Alamofire/pull/413].








		Signature mismatch in the dataTaskDidBecomeDownloadTask override closure.
		Fixed by Christian Noon [https://github.com/cnoon] in Pull Request
#317 [https://github.com/Alamofire/Alamofire/pull/317].








		Issue in the SessionDelegate where the DataTaskDelegate was not being called.
		Fixed by Christian Noon [https://github.com/cnoon] in Pull Request
#317 [https://github.com/Alamofire/Alamofire/pull/317].


















1.1.5 [https://github.com/Alamofire/Alamofire/releases/tag/1.1.5]


Released on 2015-03-26.



Added



		Convenience upload functions to the Manager.
		Added by Olivier Bohrer [https://github.com/obohrer] in Pull Request
#334 [https://github.com/Alamofire/Alamofire/pull/334].








		Info to the README about Swift 1.2 support.
		Added by Mattt Thompson [https://github.com/mattt].














Updated



		All request / upload / download methods on Manager to match the top-level functions.
		Updated by Mattt Thompson [https://github.com/mattt].








		The testDownloadRequest to no longer remove the downloaded file.
		Updated by Mattt Thompson [https://github.com/mattt].








		Ono XML response serializer example in the README.
		Updated by Mattt Thompson [https://github.com/mattt].








		Travis-CI settings to only build the master branch.
		Updated by Mattt Thompson [https://github.com/mattt].








		Code signing identities for the frameworks and targets to better support Carthage.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#400 [https://github.com/Alamofire/Alamofire/pull/400].








		iOS deployment target to iOS 8.0 for iOS target and tests.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#401 [https://github.com/Alamofire/Alamofire/pull/401].








		Legal characters to be escaped according to RFC 3986 Section 3.4.
		Updated by Stephane Lizeray [https://github.com/slizeray] in Pull Request
#370 [https://github.com/Alamofire/Alamofire/pull/370].














Fixed



		Travis-CI scheme issue, added podspec linting and added ENV variables.
		Fixed by Jonathan Hersh [https://github.com/jhersh] in Pull Request
#351 [https://github.com/Alamofire/Alamofire/pull/351].








		Code sample in the README in the Manual Parameter Encoding section.
		Fixed by Petr Korolev [https://github.com/skywinder] in Pull Request
#381 [https://github.com/Alamofire/Alamofire/pull/381].
















1.1.4 [https://github.com/Alamofire/Alamofire/releases/tag/1.1.4]


Released on 2015-01-30.



Added



		Podspec argument requires_arc to the podspec file.
		Added by Mattt Thompson [https://github.com/mattt].








		Support for Travis-CI for automated testing purposes.
		Added by Kyle Fuller [https://github.com/kylef] in Pull Request
#279 [https://github.com/Alamofire/Alamofire/pull/279].














Updated



		Installation instructions in the README to include CocoaPods, Carthage and
Embedded Frameworks.
		Updated by Mattt Thompson [https://github.com/mattt].








		Travis-CI to use Xcode 6.1.1.
		Updated by Mattt Thompson [https://github.com/mattt].








		The download method on Manager to use Request.DownloadFileDestination typealias.
		Updated by Alexander Strakovich [https://github.com/astrabot] in Pull Request
#318 [https://github.com/Alamofire/Alamofire/pull/318].








		RequestTests to no longer delete all cookies in default session configuration.
		Updated by Mattt Thompson [https://github.com/mattt].








		Travis-CI yaml file to only build the active architecture.
		Updated by Mattt Thompson [https://github.com/mattt].








		Deployment targets to iOS 7.0 and Mac OS X 10.9.
		Updated by Mattt Thompson [https://github.com/mattt].














Removed



		The tearDown method in the AlamofireDownloadResponseTestCase.
		Removed by Mattt Thompson [https://github.com/mattt].














Fixed



		Small formatting issue in the CocoaPods Podfile example in the README.
		Fixed by rborkow [https://github.com/rborkow] in Pull Request
#313 [https://github.com/Alamofire/Alamofire/pull/313].








		Several issues with the iOS and OSX targets in the Xcode project.
		Fixed by Mattt Thompson [https://github.com/mattt].








		The testDownloadRequest in DownloadTests by adding .json file extension.
		Fixed by Martin Kavalar [https://github.com/mk] in Pull Request
#302 [https://github.com/Alamofire/Alamofire/pull/302].








		The AlamofireRequestDebugDescriptionTestCase on OSX.
		Fixed by Mattt Thompson [https://github.com/mattt].








		Spec validation error with CocoaPods 0.36.0.beta-1 by disabling -b flags in cURL
debug on OSX.
		Fixed by Mattt Thompson [https://github.com/mattt].








		Travis-CI build issue by adding suppport for an iOS Example scheme.
		Fixed by Yasuharu Ozaki [https://github.com/yasuoza] in Pull Request
#322 [https://github.com/Alamofire/Alamofire/pull/322].
















1.1.3 [https://github.com/Alamofire/Alamofire/releases/tag/1.1.3]


Released on 2015-01-09.



Added



		Podspec file to support CocoaPods deployment.
		Added by Marius Rackwitz [https://github.com/mrackwitz] in Pull Request
#218 [https://github.com/Alamofire/Alamofire/pull/218].








		Shared scheme to support Carthage deployments.
		Added by Yosuke Ishikawa [https://github.com/ishkawa] in Pull Request
#228 [https://github.com/Alamofire/Alamofire/pull/228].








		New target for Alamofire OSX framework.
		Added by Martin Kavalar [https://github.com/mk] in Pull Request
#293 [https://github.com/Alamofire/Alamofire/pull/293].














Updated



		Upload and Download progress state to be updated before calling progress closure.
		Updated by Alexander Strakovich [https://github.com/astrabot] in Pull Request
#278 [https://github.com/Alamofire/Alamofire/pull/278].














Fixed



		Some casting code logic in the Generic Response Object Serialization example in
the README.
		Fixed by Philip Heinser [https://github.com/philipheinser] in Pull Request
#258 [https://github.com/Alamofire/Alamofire/pull/258].








		Indentation formatting of the responseString parameter documentation.
		Fixed by Ah.Miao [https://github.com/mrahmiao] in Pull Request
#291 [https://github.com/Alamofire/Alamofire/pull/291].
















1.1.2 [https://github.com/Alamofire/Alamofire/releases/tag/1.1.2]


Released on 2014-12-21.



Added



		POST request JSON response test.
		Added by Mattt Thompson [https://github.com/mattt].














Updated



		The response object example to use a failable initializer in the README.
		Updated by Mattt Thompson [https://github.com/mattt] in regards to Issue
#230 [https://github.com/Alamofire/Alamofire/pull/230].








		Router example in the README by removing extraneous force unwrap.
		Updated by Arnaud Mesureur [https://github.com/nsarno] in Pull Request
#247 [https://github.com/Alamofire/Alamofire/pull/247].








		Xcode project APPLICATION_EXTENSION_API_ONLY flag to YES.
		Updated by Michael Latta [https://github.com/technomage] in Pull Request
#273 [https://github.com/Alamofire/Alamofire/pull/273].








		Default HTTP header creation by moving it into a public class method.
		Updated by Christian Noon [https://github.com/cnoon] in Pull Request
#261 [https://github.com/Alamofire/Alamofire/pull/261].














Fixed



		Upload stream method to set HTTPBodyStream for streamed request.
		Fixed by Florent Vilmart [https://github.com/flovilmart] and
Mattt Thompson [https://github.com/mattt] in Pull Request
#241 [https://github.com/Alamofire/Alamofire/pull/241].








		ParameterEncoding to compose percent-encoded query strings from
percent-encoded components.
		Fixed by Oleh Sannikov [https://github.com/sunnycows] in Pull Request
#249 [https://github.com/Alamofire/Alamofire/pull/249].








		Serialization handling of NSData with 0 bytes.
		Fixed by Mike Owens [https://github.com/mowens] in Pull Request
#254 [https://github.com/Alamofire/Alamofire/pull/254].








		Issue where suggestedDownloadDestination parameters were being ignored.
		Fixed by Christian Noon [https://github.com/cnoon] in Pull Request
#257 [https://github.com/Alamofire/Alamofire/pull/257].








		Crash caused by Manager deinitialization and added documentation.
		Fixed by Mattt Thompson [https://github.com/mattt] in regards to Issue
#269 [https://github.com/Alamofire/Alamofire/pull/269].
















1.1.1 [https://github.com/Alamofire/Alamofire/releases/tag/1.1.1]


Released on 2014-11-20.



Updated



		Dispatch-based synchronized access to subdelegates.
		Updated by Mattt Thompson [https://github.com/mattt] in regards to Pull Request
#175 [https://github.com/Alamofire/Alamofire/pull/175].








		iOS 7 instructions in the README.
		Updated by Mattt Thompson [https://github.com/mattt].








		CRUD example in the README to work on Xcode 6.1.
		Updated by John Beynon [https://github.com/johnbeynon] in Pull Request
#187 [https://github.com/Alamofire/Alamofire/pull/187].








		The cURL example annotation in the README to pick up bash syntax highlighting.
		Updated by Samuel E. Giddins [https://github.com/segiddins] in Pull Request
#208 [https://github.com/Alamofire/Alamofire/pull/208].














Fixed



		Out-of-memory exception by replacing stringByAddingPercentEncodingWithAllowedCharacters
with CFURLCreateStringByAddingPercentEscapes.
		Fixed by Mattt Thompson [https://github.com/mattt] in regards to Issue
#206 [https://github.com/Alamofire/Alamofire/pull/206].








		Several issues in the README examples where an NSURL initializer needs to be unwrapped.
		Fixed by Mattt Thompson [https://github.com/mattt] in regards to Pull Request
#213 [https://github.com/Alamofire/Alamofire/pull/213].








		Possible exception when force unwrapping optional header properties.
		Fixed by Mattt Thompson [https://github.com/mattt].








		Optional cookie entry in cURL output.
		Fixed by Mattt Thompson [https://github.com/mattt] in regards to Issue
#226 [https://github.com/Alamofire/Alamofire/pull/226].








		Optional textLabel property on cells in the example app.
		Fixed by Mattt Thompson [https://github.com/mattt].
















1.1.0 [https://github.com/Alamofire/Alamofire/releases/tag/1.1.0]


Released on 2014-10-20.



Updated



		Project to support Swift 1.1 and Xcode 6.1.
		Updated by Aral Balkan [https://github.com/aral],
Ross Kimes [https://github.com/rosskimes],
Orta Therox [https://github.com/orta],
Nico du Plessis [https://github.com/nduplessis]
and Mattt Thompson [https://github.com/mattt].


















1.0.1 [https://github.com/Alamofire/Alamofire/releases/tag/1.0.1]


Released on 2014-10-20.



Added



		Tests for upload and download with progress.
		Added by Mattt Thompson [https://github.com/mattt].








		Test for question marks in url encoded query.
		Added by Mattt Thompson [https://github.com/mattt].








		The NSURLSessionConfiguration headers to cURL representation.
		Added by Matthias Ryne Cheow [https://github.com/rynecheow] in Pull Request
#140 [https://github.com/Alamofire/Alamofire/pull/140].








		Parameter encoding tests for key/value pairs containing spaces.
		Added by Mattt Thompson [https://github.com/mattt].








		Percent character encoding for the + character.
		Added by Niels van Hoorn [https://github.com/nvh] in Pull Request
#167 [https://github.com/Alamofire/Alamofire/pull/167].








		Escaping for quotes to support JSON in cURL commands.
		Added by John Gibb [https://github.com/johngibb] in Pull Request
#178 [https://github.com/Alamofire/Alamofire/pull/178].








		The request method to the Manager bringing it more inline with the top-level methods.
		Added by Brian Smith.














Fixed



		Parameter encoding of ampersands and escaping of characters.
		Fixed by Mattt Thompson [https://github.com/mattt] in regards to Issues
#146 [https://github.com/Alamofire/Alamofire/pull/146] and
#162 [https://github.com/Alamofire/Alamofire/pull/162].








		Parameter encoding of HTTPBody from occurring twice.
		Fixed by Yuri in Pull Request
#153 [https://github.com/Alamofire/Alamofire/pull/153].








		Extraneous dispatch to background by using weak reference for delegate in response.
		Fixed by Mattt Thompson [https://github.com/mattt].








		Response handler threading issue by adding a subdelegateQueue to the SessionDelegate.
		Fixed by Essan Parto [https://github.com/parto] in Pull Request
#171 [https://github.com/Alamofire/Alamofire/pull/171].








		Challenge issue where basic auth credentials were not being unwrapped.
		Fixed by Mattt Thompson [https://github.com/mattt].
















1.0.0 [https://github.com/Alamofire/Alamofire/releases/tag/1.0.0]


Released on 2014-09-25.



Added



		Initial release of Alamofire.
		Added by Mattt Thompson [https://github.com/mattt].



















          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

README.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  [image: Waterwheel - Drupal SDK]


[image: CocoaPods]
[image: Carthage compatible]
[image: Swift version]
[image: Drupal version]
[image: CocoaPods]



Waterwheel Swift SDK for Drupal



Waterwheel makes using Drupal as a backend with iOS, macOS, tvOS, or watchOS enjoyable by combining the most used features of Drupal’s API’s in one SDK. - Formerly known as Drupal iOS SDK.





    Features •
    Configuration •
    Usage •
    Installation •
    Requirements



-------




Features in 4.x



		[x] Session management


		[x] Basic Auth


		[x] Cookie Auth


		[x] Entity CRUD


		[ ] True entities


		[ ] Local caching


		[x] LoginViewController


		[ ] SignupViewController


		[x] AuthButton


		[x] Views integration into Table Views





Back to Top





Configuration



		import waterwheel


		(Optional) If you’re not using HTTPS you will have to enable the NSAppTransportSecurity [http://stackoverflow.com/questions/31254725/transport-security-has-blocked-a-cleartext-http]








Usage


The code below will give you access to the baseline of features for communicating to a Drupal site.


// Sets the URL to your Drupal site.
waterwheel.setDrupalURL("http://waterwheel-swift.com")






If is important to note that waterwheel makes heavy uses of Closures [https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html], which allows us to pass functions as returns, or store them in variables.



Login


The code below will set up Basic Authentication for each API call.


// Sets HTTPS Basic Authentication Credentials.
waterwheel.setBasicAuthUsernameAndPassword("test", password: "test2");






If you do not want to use Basic Auth, and instead use a cookie, waterwheel provides an authentication method for doing so.
Sessions are handled for you, and will restore state upon closing an app and reopening it.


waterwheel.login(usernameField.text!, password: passwordField.text!) { (success, response, json, error) in
    if (success) {
        print("logged in")
    } else {
        print("failed to login")
    }
}






Waterwheel  provides a waterwheelAuthButton to place anywhere in your app. The code below is iOS specific because of its dependence on UIKit.


let loginButton = waterwheelAuthButton()
// When we press Login, lets show our Login view controller.
loginButton.didPressLogin = {
  waterwheel.login(usernameField.text!, password: passwordField.text!) { (success, response, json, error) in
      if (success) {
          print("successful login")
      } else {
          print("failed to login")
      }
  }
}

loginButton.didPressLogout = { (success, error) in
    print("logged out")
}
self.view.addSubview(loginButton)






Taking this one step further, waterwheel also provides a waterwheelLoginViewController. You can subclass this controller and overwrite if needed. For our purposes we will use the default implementation.


First, we build our waterwheelLoginViewController and set our loginRequestCompleted and logoutRequestCompleted closures:


// Lets build our default waterwheelLoginViewController.
let vc = waterwheelLoginViewController()

//Lets add our closure that will be run when the request is completed.
vc.loginRequestCompleted = { (success, error) in
    if (success) {
        // Do something related to a successful login
        print("successful login")
        self.dismissViewControllerAnimated(true, completion: nil)
    } else {
        print (error)
    }
}
vc.logoutRequestCompleted = { (success, error) in
    if (success) {
        print("successful logout")
        // Do something related to a successful logout
        self.dismissViewControllerAnimated(true, completion: nil)
    } else {
        print (error)
    }
}






Once that is done we can now tell our waterwheelAuthButton what to do when someone presses Login. Of course this can all be handled manually in your own implementation, but for our purposes, were just using what waterwheel provides.


Here we instantiate a new waterwheelAuthButton and tell it what we want to happen when someone presses login, and logout.


let loginButton = waterwheelAuthButton()
// When we press Login, lets show our Login view controller.
loginButton.didPressLogin = {
    // Lets Present our Login View Controller since this closure is for the loginButton press
    self.presentViewController(vc, animated: true, completion: nil)
}

loginButton.didPressLogout = { (success, error) in
    print("logged out")
}
self.view.addSubview(loginButton)






Because these two Views know whether you are logged in or out, they will always show the correct state of buttons(Login, or Logout) and perform the approriate actions. The UI is up to you, but at its default you get username, password, submit, and cancel button. With all that said, you can ingore these classes and use the methods that waterwheel provides and deeply integrate into your own UI.





Node Methods



Get


// Get Node 36
waterwheel.nodeGet(nodeId: "36", params: nil, completionHandler: { (success, response, json, error) in
  print(response)
})









Create/post


//build our node body
let body = [
    "type": [
        [
            "target_id": "article"
        ]
    ],
    "title": [
        [
            "value": "Hello World"
        ]
    ],
    "body": [
        [
            "value": "How are you?"
        ]
    ]
]

// Create a new node.
waterwheel.entityPost(entityType: .Node, params: body) { (success, response, json, error) in
    if (success) {
        print(response)
    } else {
        print(error)
    }
}









Update/Put/PATCH


// Update an existing node
waterwheel.nodePatch(nodeId: "36", node: body) { (success, response, json, error) in
    print(response);
}









Delete


// Delete an existing node
waterwheel.nodeDelete(nodeId: "36", params: nil, completionHandler: { (success, response, json, error) in
    print(response)
})













Entity Requests


Since Node is rather specific, Watherweel provides entity methods as well for all entityTypes



Entity Get


waterwheel.entityGet(entityType: .Node, entityId: "36", params: params, completionHandler: completionHandler)









Entity Post


waterwheel.sharedInstance.entityPost(entityType: .Node, params: node, completionHandler: completionHandler)









Entity Patch


waterwheel.entityPatch(entityType: .Node, entityId: "36", params: nodeObject, completionHandler: completionHandler)







Entity Delete


waterwheel.entityDelete(entityType: .Node, entityId: entityId, params: params, completionHandler: completionHandler)













Installation


Waterwheel offers two installations paths. Pick your poison!





Installation



CocoaPods


If you’re using CocoaPods, just add this line to your Podfile:


pod 'waterwheel'






Install by running this command in your terminal:


pod install






Then import the library in all files where you use it:


import waterwheel









Carthage


Just add to your Cartfile:


github "acquia/waterwheel-swift"






Run carthage update to build the framework and drag the built waterwheel.framework into your Xcode project.







Communication



		If you need help, use Stack Overflow [http://stackoverflow.com/questions/tagged/waterwheel-swift]. (Tag ‘waterwheel-swift’)


		If you found a bug, open an issue.


		If you have a feature request, open an issue.


		If you want to contribute, submit a pull request.





Back to Top





Drupal Compatibility



The framework is tracking Drupal 8. As new features come out in 8, they will be added ASAP. Since Drupal 7 and Drupal 8 are completely different in terms of API’s, you will need to use the correct version of waterwheel depending on your Drupal version.







Requirements



		iOS 8.0+ / Mac OS X 10.9+ / tvOS 9.0+ / watchOS 2.0+


		Xcode 7.3+





| waterwheel version | Drupal version   |                                   Notes                                   |
|:——————–:|:—————————:|:—————————-:|:————————————————————————-:|
|          4.x [https://github.com/kylebrowning/waterwheel-swift/tree/4.x]         |            Drupal 8 (Swift)            |
|          3.x [https://github.com/kylebrowning/waterwheel-swift/tree/3.x]         |            Drupal 8 (Obj-C)                   |  |
|          2.x [https://github.com/kylebrowning/waterwheel-swift/tree/2.x]         |            Drupal 6-7 (Obj-C)              |        Requires Services [http://drupal.org/project/services] module                                                                    |


Back to Top






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/waterwheelDemo/Pods/SwiftyJSON/README.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  #SwiftyJSON 中文介绍 [http://tangplin.github.io/swiftyjson/]


[image: Travis CI] [https://travis-ci.org/SwiftyJSON/SwiftyJSON]


SwiftyJSON makes it easy to deal with JSON data in Swift.



		Why is the typical JSON handling in Swift NOT good


		Requirements


		Integration


		Usage
		Initialization


		Subscript


		Loop


		Error


		Optional getter


		Non-optional getter


		Setter


		Raw object


		Literal convertibles








		Work with Alamofire





##Why is the typical JSON handling in Swift NOT good?
Swift is very strict about types. But although explicit typing is good for saving us from mistakes, it becomes painful when dealing with JSON and other areas that are, by nature, implicit about types.


Take the Twitter API for example. Say we want to retrieve a user’s “name” value of some tweet in Swift (according to Twitter’s API https://dev.twitter.com/docs/api/1.1/get/statuses/home_timeline).


The code would look like this:



if let statusesArray = try? NSJSONSerialization.JSONObjectWithData(data, options: .AllowFragments) as? [[String: AnyObject]],
    let user = statusesArray[0]["user"] as? [String: AnyObject],
    let username = user["name"] as? String {
    // Finally we got the username
}






It’s not good.


Even if we use optional chaining, it would be messy:



if let JSONObject = try NSJSONSerialization.JSONObjectWithData(data, options: .AllowFragments) as? [[String: AnyObject]],
    let username = (JSONObject[0]["user"] as? [String: AnyObject])?["name"] as? String {
        // There's our username
}






An unreadable mess–for something that should really be simple!


With SwiftyJSON all you have to do is:



let json = JSON(data: dataFromNetworking)
if let userName = json[0]["user"]["name"].string {
  //Now you got your value
}






And don’t worry about the Optional Wrapping thing. It’s done for you automatically.



let json = JSON(data: dataFromNetworking)
if let userName = json[999999]["wrong_key"]["wrong_name"].string {
    //Calm down, take it easy, the ".string" property still produces the correct Optional String type with safety
} else {
    //Print the error
    print(json[999999]["wrong_key"]["wrong_name"])
}







Requirements



		iOS 7.0+ / OS X 10.9+


		Xcode 7





##Integration


####CocoaPods (iOS 8+, OS X 10.9+)
You can use Cocoapods [http://cocoapods.org/] to install SwiftyJSONby adding it to your Podfile:


platform :ios, '8.0'
use_frameworks!

target 'MyApp' do
    pod 'SwiftyJSON', :git => 'https://github.com/SwiftyJSON/SwiftyJSON.git'
end






Note that this requires CocoaPods version 36, and your iOS deployment target to be at least 8.0:


####Carthage (iOS 8+, OS X 10.9+)
You can use Carthage [https://github.com/Carthage/Carthage] to install SwiftyJSON by adding it to your Cartfile:


github "SwiftyJSON/SwiftyJSON"






####Swift Package Manager
You can use The Swift Package Manager [https://swift.org/package-manager] to install SwiftyJSON by adding the proper description to your Package.swift file:


import PackageDescription

let package = Package(
    name: "YOUR_PROJECT_NAME",
    targets: [],
    dependencies: [
        .Package(url: "https://github.com/SwiftyJSON/SwiftyJSON.git", versions: "2.3.3" ..< Version.max)
    ]
)






Note that the Swift Package Manager [https://swift.org/package-manager] is still in early design and development, for more infomation checkout its GitHub Page [https://github.com/apple/swift-package-manager]


####Manually (iOS 7+, OS X 10.9+)


To use this library in your project manually you may:



		for Projects, just drag SwiftyJSON.swift to the project tree


		for Workspaces, include the whole SwiftyJSON.xcodeproj








Usage


####Initialization


import SwiftyJSON






let json = JSON(data: dataFromNetworking)






let json = JSON(jsonObject)






if let dataFromString = jsonString.dataUsingEncoding(NSUTF8StringEncoding, allowLossyConversion: false) {
    let json = JSON(data: dataFromString)
}






####Subscript


//Getting a double from a JSON Array
let name = json[0].double






//Getting a string from a JSON Dictionary
let name = json["name"].stringValue






//Getting a string using a path to the element
let path = [1,"list",2,"name"]
let name = json[path].string
//Just the same
let name = json[1]["list"][2]["name"].string
//Alternatively
let name = json[1,"list",2,"name"].string






//With a hard way
let name = json[].string






//With a custom way
let keys:[SubscriptType] = [1,"list",2,"name"]
let name = json[keys].string






####Loop


//If json is .Dictionary
for (key,subJson):(String, JSON) in json {
   //Do something you want
}






The first element is always a String, even if the JSON is an Array


//If json is .Array
//The `index` is 0..<json.count's string value
for (index,subJson):(String, JSON) in json {
    //Do something you want
}






####Error
Use a subscript to get/set a value in an Array or Dictionary


If the JSON is:



		an array, the app may crash with “index out-of-bounds.”


		a dictionary, it will be assigned nil without a reason.


		not an array or a dictionary, the app may crash with an “unrecognised selector” exception.





This will never happen in SwiftyJSON.


let json = JSON(["name", "age"])
if let name = json[999].string {
    //Do something you want
} else {
    print(json[999].error) // "Array[999] is out of bounds"
}






let json = JSON(["name":"Jack", "age": 25])
if let name = json["address"].string {
    //Do something you want
} else {
    print(json["address"].error) // "Dictionary["address"] does not exist"
}






let json = JSON(12345)
if let age = json[0].string {
    //Do something you want
} else {
    print(json[0])       // "Array[0] failure, It is not an array"
    print(json[0].error) // "Array[0] failure, It is not an array"
}

if let name = json["name"].string {
    //Do something you want
} else {
    print(json["name"])       // "Dictionary[\"name"] failure, It is not an dictionary"
    print(json["name"].error) // "Dictionary[\"name"] failure, It is not an dictionary"
}






####Optional getter


//NSNumber
if let id = json["user"]["favourites_count"].number {
   //Do something you want
} else {
   //Print the error
   print(json["user"]["favourites_count"].error)
}






//String
if let id = json["user"]["name"].string {
   //Do something you want
} else {
   //Print the error
   print(json["user"]["name"])
}






//Bool
if let id = json["user"]["is_translator"].bool {
   //Do something you want
} else {
   //Print the error
   print(json["user"]["is_translator"])
}






//Int
if let id = json["user"]["id"].int {
   //Do something you want
} else {
   //Print the error
   print(json["user"]["id"])
}
...






####Non-optional getter
Non-optional getter is named xxxValue


//If not a Number or nil, return 0
let id: Int = json["id"].intValue






//If not a String or nil, return ""
let name: String = json["name"].stringValue






//If not a Array or nil, return []
let list: Array<JSON> = json["list"].arrayValue






//If not a Dictionary or nil, return [:]
let user: Dictionary<String, JSON> = json["user"].dictionaryValue






####Setter


json["name"] = JSON("new-name")
json[0] = JSON(1)






json["id"].int =  1234567890
json["coordinate"].double =  8766.766
json["name"].string =  "Jack"
json.arrayObject = [1,2,3,4]
json.dictionary = ["name":"Jack", "age":25]






####Raw object


let jsonObject: AnyObject = json.object






if let jsonObject: AnyObject = json.rawValue






//convert the JSON to raw NSData
if let data = json.rawData() {
    //Do something you want
}






//convert the JSON to a raw String
if let string = json.rawString() {
    //Do something you want
}






####Existance


//shows you whether value specified in JSON or not
if json["name"].isExists()






####Literal convertibles
For more info about literal convertibles: Swift Literal Convertibles [http://nshipster.com/swift-literal-convertible/]


//StringLiteralConvertible
let json: JSON = "I'm a json"






//IntegerLiteralConvertible
let json: JSON =  12345






//BooleanLiteralConvertible
let json: JSON =  true






//FloatLiteralConvertible
let json: JSON =  2.8765






//DictionaryLiteralConvertible
let json: JSON =  ["I":"am", "a":"json"]






//ArrayLiteralConvertible
let json: JSON =  ["I", "am", "a", "json"]






//NilLiteralConvertible
let json: JSON =  nil






//With subscript in array
var json: JSON =  [1,2,3]
json[0] = 100
json[1] = 200
json[2] = 300
json[999] = 300 //Don't worry, nothing will happen






//With subscript in dictionary
var json: JSON =  ["name": "Jack", "age": 25]
json["name"] = "Mike"
json["age"] = "25" //It's OK to set String
json["address"] = "L.A." // Add the "address": "L.A." in json






//Array & Dictionary
var json: JSON =  ["name": "Jack", "age": 25, "list": ["a", "b", "c", ["what": "this"]]]
json["list"][3]["what"] = "that"
json["list",3,"what"] = "that"
let path = ["list",3,"what"]
json[path] = "that"






##Work with Alamofire


SwiftyJSON nicely wraps the result of the Alamofire JSON response handler:


Alamofire.request(.GET, url).validate().responseJSON { response in
    switch response.result {
    case .Success:
        if let value = response.result.value {
          let json = JSON(value)
          print("JSON: \(json)")
        }
    case .Failure(let error):
        print(error)
    }
}










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

search.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/comment-close.png





waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/waterwheelDemo/Pods/ObjectMapper/README.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  
ObjectMapper


[image: CocoaPods] [https://github.com/Hearst-DD/ObjectMapper]
[image: Carthage compatible] [https://github.com/Carthage/Carthage]
[image: Build Status] [https://travis-ci.org/Hearst-DD/ObjectMapper]


ObjectMapper is a framework written in Swift that makes it easy for you to convert your model objects (classes and structs) to and from JSON.



		Features


		The Basics


		Mapping Nested Objects


		Custom Transformations


		Subclassing


		Generic Objects


		Mapping Context


		ObjectMapper + Alamofire


		ObjectMapper + Realm


		To Do


		Contributing


		Installation








Features:



		Mapping JSON to objects


		Mapping objects to JSON


		Nested Objects (stand alone, in arrays or in dictionaries)


		Custom transformations during mapping


		Struct support








The Basics


To support mapping, a class or struct just needs to implement the Mappable protocol which includes the following functions:


init?(_ map: Map)
mutating func mapping(map: Map)






ObjectMapper uses the <- operator to define how each member variable maps to and from JSON.


class User: Mappable {
    var username: String?
    var age: Int?
    var weight: Double!
    var array: [AnyObject]?
    var dictionary: [String : AnyObject] = [:]
    var bestFriend: User?                       // Nested User object
    var friends: [User]?                        // Array of Users
    var birthday: NSDate?

    required init?(_ map: Map) {

    }

    // Mappable
    func mapping(map: Map) {
        username    <- map["username"]
        age         <- map["age"]
        weight      <- map["weight"]
        array       <- map["arr"]
        dictionary  <- map["dict"]
        bestFriend  <- map["best_friend"]
        friends     <- map["friends"]
        birthday    <- (map["birthday"], DateTransform())
    }
}

struct Temperature: Mappable {
    var celsius: Double?
    var fahrenheit: Double?

    init?(_ map: Map) {

    }

    mutating func mapping(map: Map) {
        celsius     <- map["celsius"]
        fahrenheit  <- map["fahrenheit"]
    }
}






Once your class implements Mappable, ObjectMapper allows you to easily convert to and from JSON.


Convert a JSON string to a model object:


let user = User(JSONString: JSONString)






Convert a model object to a JSON string:


let JSONString = user.toJSONString(prettyPrint: true)






Alternatively, the Mapper.swift class can also be used to accomplish the above (it also provides extra functionality for other situations):


// Convert JSON String to Model
let user = Mapper<User>().map(JSONString: JSONString)
// Create JSON String from Model
let JSONString = Mapper().toJSONString(user, prettyPrint: true)






ObjectMapper can map classes composed of the following types:



		Int


		Bool


		Double


		Float


		String


		RawRepresentable (Enums)


		Array<AnyObject>


		Dictionary<String, AnyObject>


		Object<T: Mappable>


		Array<T: Mappable>


		Array<Array<T: Mappable>>


		Set<T: Mappable>


		Dictionary<String, T: Mappable>


		Dictionary<String, Array<T: Mappable>>


		Optionals of all the above


		Implicitly Unwrapped Optionals of the above






Mappable Protocol



mutating func mapping(map: Map)


This function is where all mapping definitions should go. When parsing JSON, this function is executed after successful object creation. When generating JSON, it is the only function that is called on the object.





init?(_ map: Map)


This failable initializer is used by ObjectMapper for object creation. It can be used by developers to validate JSON prior to object serialization. Returning nil within the function will prevent the mapping from occuring. You can inspect the JSON stored within the Map object to do your validation:


required init?(_ map: Map){
    // check if a required "name" property exists within the JSON.
    if map.JSONDictionary["name"] == nil {
        return nil
    }
}











StaticMappable Protocol


StaticMappable is an alternative to Mappable. It provides developers with a static function that is used by ObjectMapper for object initialization instead of init?(_ map: Map).


Note: StaticMappable, like Mappable, is a sub protocol of BaseMappable which is where the mapping(_ map: Map) function is defined.



static func objectForMapping(map: Map) -> BaseMappable?


ObjectMapper uses this function to get objects to use for mapping. Developers should return an instance of an object that conforms to BaseMappable in this function. This function can also be used to:



		validate JSON prior to object serialization


		provide an existing cached object to be used for mapping


		return an object of another type (which also conforms to BaseMappable) to be used for mapping. For instance, you may inspect the JSON to infer the type of object that should be used for mapping (see example [https://github.com/Hearst-DD/ObjectMapper/blob/master/ObjectMapperTests/ClassClusterTests.swift#L62])





If you need to implemented ObjectMapper in an extension, you will need to select this protocol instead of Mappable.









Easy Mapping of Nested Objects


ObjectMapper supports dot notation within keys for easy mapping of nested objects. Given the following JSON String:


"distance" : {
     "text" : "102 ft",
     "value" : 31
}






You can access the nested objects as follows:


func mapping(map: Map) {
    distance <- map["distance.value"]
}






Nested keys also support accessing values from an array. Given a JSON response with an array of distances, the value could be accessed as follows:


distance <- map["distances.0.value"]






If you have a key that contains ., you can individually disable the above feature as follows:


func mapping(map: Map) {
    identifier <- map["app.identifier", nested: false]
}









Custom Transforms


ObjectMapper also supports custom transforms that convert values during the mapping process. To use a transform, simply create a tuple with map["field_name"] and the transform of your choice on the right side of the <- operator:


birthday <- (map["birthday"], DateTransform())






The above transform will convert the JSON Int value to an NSDate when reading JSON and will convert the NSDate to an Int when converting objects to JSON.


You can easily create your own custom transforms by adopting and implementing the methods in the TransformType protocol:


public protocol TransformType {
    typealias Object
    typealias JSON

    func transformFromJSON(value: AnyObject?) -> Object?
    func transformToJSON(value: Object?) -> JSON?
}







TransformOf


In a lot of situations you can use the built-in transform class TransformOf to quickly perform a desired transformation. TransformOf is initialized with two types and two closures. The types define what the transform is converting to and from and the closures perform the actual transformation.


For example, if you want to transform a JSON String value to an Int you could use TransformOf as follows:


let transform = TransformOf<Int, String>(fromJSON: { (value: String?) -> Int? in 
    // transform value from String? to Int?
    return Int(value!)
}, toJSON: { (value: Int?) -> String? in
    // transform value from Int? to String?
    if let value = value {
        return String(value)
    }
    return nil
})

id <- (map["id"], transform)






Here is a more condensed version of the above:


id <- (map["id"], TransformOf<Int, String>(fromJSON: { Int($0!) }, toJSON: { $0.map { String($0) } }))











Subclasses


Classes that implement the Mappable protocol can easily be subclassed. When subclassing mappable classes, follow the structure below:


class Base: Mappable {
    var base: String?
    
    required init?(_ map: Map) {

    }

    func mapping(map: Map) {
        base <- map["base"]
    }
}

class Subclass: Base {
    var sub: String?

    required init?(_ map: Map) {
        super.init(map)
    }

    override func mapping(map: Map) {
        super.mapping(map)
        
        sub <- map["sub"]
    }
}






Make sure your subclass implemenation calls the right initializers and mapping functions to also apply the mappings from your superclass.





Generic Objects


ObjectMapper can handle classes with generic types as long as the generic type also conforms to Mappable. See the following example:


class Result<T: Mappable>: Mappable {
    var result: T?

    required init?(_ map: Map){

    }

    func mapping(map: Map) {
        result <- map["result"]
    }
}

let result = Mapper<Result<User>>().map(JSON)









Mapping Context


The Map object which is passed around during mapping, has an optional MapContext object that is available for developers to use if they need to pass information around during mapping.


To take advantage of this feature, simple create an object that implements MapContext (which is an empty protocol) and pass it into Mapper during initialization.


struct Context: MapContext {
    var importantMappingInfo = "Info that I need during mapping"
}

class User: Mappable {
    var name: String?
    
    required init?(_ map: Map){
    
    }
    
    func mapping(map: Map){
        if let context = map.context as? Context {
            // use context to make decisions about mapping
        }
    }
}

let context = Context()
let user = Mapper<User>(context: context).map(JSONString)






#ObjectMapper + Alamofire


If you are using Alamofire [https://github.com/Alamofire/Alamofire] for networking and you want to convert your responses to Swift objects, you can use AlamofireObjectMapper [https://github.com/tristanhimmelman/AlamofireObjectMapper]. It is a simple Alamofire extension that uses ObjectMapper to automatically map JSON response data to Swift objects.


#ObjectMapper + Realm


ObjectMapper and Realm can be used together. Simply follow the class structure below and you will be able to use ObjectMapper to generate your Realm models:


class Model: Object, Mappable {
    dynamic var name = ""

    required convenience init?(_ map: Map) {
        self.init()
    }

    func mapping(map: Map) {
        name <- map["name"]
    }
}






If you want to serialize associated RealmObjects, you can use ObjectMapper+Realm [https://github.com/jakenberg/ObjectMapper-Realm]. It is a simple Realm extension that serializes arbitrary JSON into Realm’s List class.


Note: Generating a JSON string of a Realm Object using ObjectMappers’ toJSON function only works within a Realm write transaction. This is caused because ObjectMapper uses the inout flag in its mapping functions (<-) which are used both for serializing and deserializing. Realm detects the flag and forces the toJSON function to be called within a write block even though the objects are not being modified.





To Do



		Improve error handling. Perhaps using throws


		Class cluster documentation








Contributing


Contributions are very welcome 👍😃.


Before submitting any pull request, please ensure you have run the included tests and they have passed. If you are including new functionality, please write test cases for it as well.





Installation


ObjectMapper can be added to your project using CocoaPods 0.36 or later [http://blog.cocoapods.org/Pod-Authors-Guide-to-CocoaPods-Frameworks/] by adding the following line to your Podfile:


pod 'ObjectMapper', '~> 1.3'






If you’re using Carthage [https://github.com/Carthage/Carthage] you can add a dependency on ObjectMapper by adding it to your Cartfile:


github "Hearst-DD/ObjectMapper" ~> 1.3






Otherwise, ObjectMapper can be added as a submodule:



		Add ObjectMapper as a submodule [http://git-scm.com/docs/git-submodule] by opening the terminal, cd-ing into your top-level project directory, and entering the command git submodule add https://github.com/Hearst-DD/ObjectMapper.git


		Open the ObjectMapper folder, and drag ObjectMapper.xcodeproj into the file navigator of your app project.


		In Xcode, navigate to the target configuration window by clicking on the blue project icon, and selecting the application target under the “Targets” heading in the sidebar.


		Ensure that the deployment target of ObjectMapper.framework matches that of the application target.


		In the tab bar at the top of that window, open the “Build Phases” panel.


		Expand the “Target Dependencies” group, and add ObjectMapper.framework.


		Click on the + button at the top left of the panel and select “New Copy Files Phase”. Rename this new phase to “Copy Frameworks”, set the “Destination” to “Frameworks”, and add ObjectMapper.framework.









          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

CHANGELOG.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  #Change Log
All notable changes to this project will be documented in this file. starting with version 4.2.5





4.3.0 [https://github.com/Acquia/waterwheel-swift/releases/tag/4.3.0] (09/27/2016)


Released on Tuesday, September 27, 2016. All issues associated with this milestone can be found using this filter [https://github.com/Acquia/waterwheel-swift/issues?q=milestone%3A4.3.0+is%3Aclosed].



Updated



		Update waterwheel demo to use waterwheel-swift.com


		Implemented by kylebrowning in #147 [https://github.com/acquia/waterwheel-swift/issues/147].


		Support Swift 3.0


		Implemented by kylebrowning in #144 [https://github.com/acquia/waterwheel-swift/issues/144].








Fixed



		Fixes Carthage support


		Implemented by kylebrowning in #146 [https://github.com/acquia/waterwheel-swift/issues/146].










4.2.8 [https://github.com/Acquia/waterwheel-swift/releases/tag/4.2.8] (08/26/2016)


Released on Friday, August 26, 2016. All issues associated with this milestone can be found using this filter [https://github.com/Acquia/waterwheel-swift/issues?q=milestone%3A4.2.8+is%3Aclosed].



Added



		Provide ViewsTableViewController


		Implemented by kylebrowning in #141 [https://github.com/acquia/waterwheel-swift/issues/141].








Fixed



		waterwheelLoginViewController has no cancel button/action


		Implemented by kylebrowning in #143 [https://github.com/acquia/waterwheel-swift/issues/143].










4.2.7 [https://github.com/Acquia/waterwheel-swift/releases/tag/4.2.7] (08/17/2016)


Released on Wednesday, August 17, 2016. All issues associated with this milestone can be found using this filter [https://github.com/Acquia/waterwheel-swift/issues?q=milestone%3A4.2.7+is%3Aclosed].



Changed



		Rename ViewExtension because it can be confused with a Drupal View


		Implemented by kylebrowning in #140 [https://github.com/acquia/waterwheel-swift/issues/140].










4.2.6 [https://github.com/Acquia/waterwheel-swift/releases/tag/4.2.6] (08/16/2016)


Released on Tuesday, August 16, 2016. All issues associated with this milestone can be found using this filter [https://github.com/Acquia/waterwheel-swift/issues?q=milestone%3A4.2.6+is%3Aclosed].



Updated



		100% doc coverage for waterwheelAuthButton


		Implemented by kylebrowning in #138 [https://github.com/acquia/waterwheel-swift/issues/138].








Changed



		Move Title color from Auth button out of setup


		Implemented by kylebrowning in #139 [https://github.com/acquia/waterwheel-swift/issues/139].










4.2.5 [https://github.com/Acquia/waterwheel-swift/releases/tag/4.2.5] (08/16/2016)


Released on Tuesday, August 16, 2016. All issues associated with this milestone can be found using this filter [https://github.com/Acquia/waterwheel-swift/issues?q=milestone%3A4.2.5+is%3Aclosed].



Fixed



		properties on AuthButton are protected


		Implemented by kylebrowning in #137 [https://github.com/acquia/waterwheel-swift/issues/137].











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

waterwheelDemo/waterwheelDemo-iOS/Carthage/Checkouts/waterwheel-swift/waterwheelDemo/Pods/SwiftyUserDefaults/README.html


    
      Navigation


      
        		
          index


        		Waterwheel stable documentation »

 
      


    


    
      
          
            
  
SwiftyUserDefaults


[image: Platforms]
[image: CI Status] [https://travis-ci.org/radex/SwiftyUserDefaults]
[image: CocoaPods] [https://cocoapods.org/pods/SwiftyUserDefaults]
[image: Carthage compatible]
[image: Swift version]



Modern Swift API for NSUserDefaults



SwiftyUserDefaults makes user defaults enjoyable to use by combining expressive Swifty API with the benefits of static typing. Define your keys in one place, use value types easily, and get extra safety and convenient compile-time checks for free.


Read Statically-typed NSUserDefaults [http://radex.io/swift/nsuserdefaults/static] for more information about this project.





    Features •
    Usage •
    Custom types •
    Traditional API • 
    Installation • 
    More info



-------




Features


There’s only two steps to using SwiftyUserDefaults:


Step 1: Define your keys


extension DefaultsKeys {
    static let username = DefaultsKey<String?>("username")
    static let launchCount = DefaultsKey<Int>("launchCount")
}






Step 2: Just use it!


// Get and set user defaults easily
let username = Defaults[.username]
Defaults[.hotkeyEnabled] = true

// Modify value types in place
Defaults[.launchCount] += 1
Defaults[.volume] -= 0.1
Defaults[.strings] += "… can easily be extended!"

// Use and modify typed arrays
Defaults[.libraries].append("SwiftyUserDefaults")
Defaults[.libraries][0] += " 2.0"

// Easily work with custom serialized types
Defaults[.color] = NSColor.white
Defaults[.color]?.whiteComponent // => 1.0






The convenient dot syntax is only available if you define your keys by extending magic DefaultsKeys class. You can also just pass the DefaultsKey value in square brackets, or use a more traditional string-based API. How? Keep reading.





Usage



Define your keys


To get the most out of SwiftyUserDefaults, define your user defaults keys ahead of time:


let colorKey = DefaultsKey<String>("color")






Just create a DefaultsKey object, put the type of the value you want to store in angle brackets, the key name in parentheses, and you’re good to go.


You can now use the Defaults shortcut to access those values:


Defaults[colorKey] = "red"
Defaults[colorKey] // => "red", typed as String






The compiler won’t let you set a wrong value type, and fetching conveniently returns String.





Take shortcuts


For extra convenience, define your keys by extending magic DefaultsKeys class and adding static properties:


extension DefaultsKeys {
    static let username = DefaultsKey<String?>("username")
    static let launchCount = DefaultsKey<Int>("launchCount")
}






And use the shortcut dot syntax:


Defaults[.username] = "joe"
Defaults[.launchCount]









Just use it!


You can easily modify value types (strings, numbers, array) in place, as if you were working with a plain old dictionary:


// Modify value types in place
Defaults[.launchCount] += 1
Defaults[.volume] -= 0.1
Defaults[.strings] += "… can easily be extended!"

// Use and modify typed arrays
Defaults[.libraries].append("SwiftyUserDefaults")
Defaults[.libraries][0] += " 2.0"

// Easily work with custom serialized types
Defaults[.color] = NSColor.white
Defaults[.color]?.whiteComponent // => 1.0









Supported types


SwiftyUserDefaults supports all of the standard NSUserDefaults types, like strings, numbers, booleans, arrays and dictionaries.


Here’s a full table:


| Optional variant       | Non-optional variant  | Default value |
|————————|———————–|—————|
| String?              | String              | ""          |
| Int?                 | Int                 | 0           |
| Double?              | Double              | 0.0         |
| Bool?                | Bool                | false       |
| Data?                | Data                | Data()      |
| [Any]?               | [Any]               | []          |
| [String: Any]?       | [String: Any]       | [:]         |
| Date?                | n/a                   | n/a           |
| URL?                 | n/a                   | n/a           |
| Any?                 | n/a                   | n/a           |


You can mark a type as optional to get nil if the key doesn’t exist. Otherwise, you’ll get a default value that makes sense for a given type.



Typed arrays


Additionally, typed arrays are available for these types:


| Array type | Optional variant |
|————|——————|
| [String] | [String]?      |
| [Int]    | [Int]?         |
| [Double] | [Double]?      |
| [Bool]   | [Bool]?        |
| [Data]   | [Data]?        |
| [Date]   | [Date]?        |







Custom types


You can easily store custom NSCoding-compliant types by extending UserDefaults with this stub subscript:


extension UserDefaults {
    subscript(key: DefaultsKey<NSColor?>) -> NSColor? {
        get { return unarchive(key) }
        set { archive(key, newValue) }
    }
}






Just copy&paste this and change NSColor to your class name.


Here’s a usage example:


extension DefaultsKeys {
    static let color = DefaultsKey<NSColor?>("color")
}

Defaults[.color] // => nil
Defaults[.color] = NSColor.white
Defaults[.color] // => w 1.0, a 1.0
Defaults[.color]?.whiteComponent // => 1.0







Custom types with default values


If you don’t want to deal with nil when fetching a user default value, you can remove ? marks and supply the default value, like so:


extension UserDefaults {
    subscript(key: DefaultsKey<NSColor>) -> NSColor {
        get { return unarchive(key) ?? NSColor.clear }
        set { archive(key, newValue) }
    }
}









Enums


In addition to NSCoding, you can store enum values the same way:


enum MyEnum: String {
    case A, B, C
}

extension UserDefaults {
    subscript(key: DefaultsKey<MyEnum?>) -> MyEnum? {
        get { return unarchive(key) }
        set { archive(key, newValue) }
    }
}






The only requirement is that the enum has to be RawRepresentable by a simple type like String or Int.







Existence


if !Defaults.hasKey(.hotkey) {
    Defaults.remove(.hotkeyOptions)
}






You can use the hasKey method to check for key’s existence in the user defaults. remove() is an alias for removeObjectForKey(), that also works with DefaultsKeys shortcuts.





Remove all keys


To reset user defaults, use removeAll method.


Defaults.removeAll()









Shared user defaults


If you’re sharing your user defaults between different apps or an app and its extensions, you can use SwiftyUserDefaults by overriding the Defaults shortcut with your own. Just add in your app:


var Defaults = UserDefaults(suiteName: "com.my.app")!











Traditional API


There’s also a more traditional string-based API available. This is considered legacy API, and it’s recommended that you use statically defined keys instead.


Defaults["color"].string            // returns String?
Defaults["launchCount"].int         // returns Int?
Defaults["chimeVolume"].double      // returns Double?
Defaults["loggingEnabled"].bool     // returns Bool?
Defaults["lastPaths"].array         // returns [Any]?
Defaults["credentials"].dictionary  // returns [String: Any]?
Defaults["hotkey"].data             // returns Data?
Defaults["firstLaunchAt"].date      // returns Date?
Defaults["anything"].object         // returns Any?
Defaults["anything"].number         // returns NSNumber?






When you don’t want to deal with the nil case, you can use these helpers that return a default value for non-existing defaults:


Defaults["color"].stringValue            // defaults to ""
Defaults["launchCount"].intValue         // defaults to 0
Defaults["chimeVolume"].doubleValue      // defaults to 0.0
Defaults["loggingEnabled"].boolValue     // defaults to false
Defaults["lastPaths"].arrayValue         // defaults to []
Defaults["credentials"].dictionaryValue  // defaults to [:]
Defaults["hotkey"].dataValue             // defaults to Data()









Installation


Note: If you’re running Swift 2, use SwiftyUserDefaults v2.2.1 [https://github.com/radex/SwiftyUserDefaults/tree/2.2.1]



CocoaPods


If you’re using CocoaPods, just add this line to your Podfile:


pod 'SwiftyUserDefaults'






Install by running this command in your terminal:


pod install






Then import the library in all files where you use it:


import SwiftyUserDefaults









Carthage


Just add to your Cartfile:


github "radex/SwiftyUserDefaults"









Manually


Simply copy Sources/SwiftyUserDefaults.swift to your Xcode project.







More like this


If you like SwiftyUserDefaults, check out SwiftyTimer [https://github.com/radex/SwiftyTimer], which applies the same swifty approach to NSTimer.


You might also be interested in my blog posts which explain the design process behind those libraries:



		Swifty APIs: NSUserDefaults [http://radex.io/swift/nsuserdefaults/]


		Statically-typed NSUserDefaults [http://radex.io/swift/nsuserdefaults/static]


		Swifty APIs: NSTimer [http://radex.io/swift/nstimer/]


		Swifty methods [http://radex.io/swift/methods/]






Contributing


If you have comments, complaints or ideas for improvements, feel free to open an issue or a pull request. Or ping me on Twitter [http://twitter.com/radexp].





Author and license


Radek Pietruszewski



		github.com/radex [http://github.com/radex]


		twitter.com/radexp [http://twitter.com/radexp]


		radex.io [http://radex.io]


		this.is@radex.io





SwiftyUserDefaults is available under the MIT license. See the LICENSE file for more info.










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/minus.png





_static/comment.png





_static/comment-bright.png





